Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effects of water-side operating conditions (mass flow rates and inlet temperatures) of both evaporator and gas cooler on the experimental as well as simulated performances (cooling and heating capacities, system coefficient of performance (COP) and water outlet temperatures) of the transcritical CO2 heat pump for simultaneous water cooling and heating the are studied and revised. Study shows that both the water mass flow rate and inlet temperature have significant effect on the system performances. Test results show that the effect of evaporator water mass flow rate on the system performances and water outlet temperatures is more pronounced (COP increases by 0.6 for 1 kg/min) compared to that of gas cooler water mass flow rate (COP increases by 0.4 for 1 kg/min) and the effect of gas cooler water inlet temperature is more significant (COP decreases by 0.48 for given range) compared to that of evaporator water inlet temperature (COP increases by 0.43 for given range). Comparisons of experimental values with simulated results show the maximum deviation of 5% for cooling capacity, 10% for heating capacity and 16% for system COP.
Czasopismo
Rocznik
Tom
Strony
23--40
Opis fizyczny
Bibliogr. 21 poz.,
Twórcy
autor
autor
- Department of Mechanical Engineering, Institute of Technology, BHU, Varanasi 221005, India
Bibliografia
- [1] Neksa P.: CO2 heat pump systems. Int. J. Refrigeration 25(2002), 421–427.
- [2] Kim M.H., Pettersen J., Bullard C.W.: Fundamental process and system design issues in CO2 vapor compression systems. Prog. Energ. Combust. Sci. 30(2004), 119–174.
- [3] Austin B.T., Sumathy K.: Transcritical carbon dioxide heat pump systems: A review. Renew. Sust. Energ. Rev. 15(2011), 4013–4029.
- [4] Neksa P., Rekstad H., Zakeri G.R., Schiefloe P.A.: CO2 heat pump water heater: characteristics, system design & experimental results. Int. J. Refrig. 21(1998), 172–179.
- [5] Yarral M.G., White S.D., Cleland D.J., Kallu R.D.S., Hedley R.A.: Performance of transcritical CO2 heat pump for simultaneous refrigeration and water heating. In: XX Int. Congress of Refrigeration, Sydney, 1999, Paper 651.
- [6] White S.D., Yarrall M.G., Cleland D.J., Hedley R.A.: Modelling the performance of a transcritical CO2 heat pump for high temperature heating. Int. J. Refrig. 25(2002), 479–486.
- [7] Adriansyah W.: Combined air conditioning and tap water heating plant using CO2 as refrigerant. Energy Buildings 36(2004), 690–695.
- [8] Kim S.G., Kim Y.J., Lee G., Kim M.S.: The performance of a transcritical CO2 cycle with an internal heat exchanger for hot water heating. Int. J. Refrig. 28(2005), 1064–1072.
- [9] Sarkar J., Bhattacharyya S., Ramgopal M.: Simulation of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. Int. J. Refrig. 29(2006), 735–743.
- [10] Agrawal N., Bhattacharyya S.: Optimized transcritical CO2 heat pumps: Performance comparison of capillary tubes against expansion valves. Int. J. Refrig., 31(2008), 388–395.
- [11] Sarkar J., Bhattacharyya S., Ramgopal M.: A transcritical CO2 heat pump for simultaneous water cooling and heating: Test results and model validation. Int. J. Energy Res. 33(2009), 100–109.
- [12] Sarkar J, Bhattacharyya S, Ramgopal M.: Experimental investigation of transcritical CO2 heat pump for simultaneous water cooling and heating. Therm. Sci. 14(2010), 57–64.
- [13] Bhattacharyya S., Garai A., Sarkar J.: Thermodynamic analysis and optimization of a novel N2O-CO2 cascade system for refrigeration and heating. Int. J. Refrig. 32(2009), 1077–1084.
- [14] Byrne P., Miriel J., Lenat Y.: Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2 as a working fluid. Int. J. Refrig.32(2009), 1711–1723.
- [15] Yang J.L., Ma Y.T., Li M.X., Hua J.: Modeling and simulating the transcritical CO2 heat pump system. Energy Int. J. 35(2010), 4812–4818.
- [16] Agrawal N., Bhattacharyya S.: Experimental investigations on adiabatic capillary tube in a transcritical CO2 heat pump system for simultaneous water cooling and heating. Int. J. of Refrig. 34(2011), 476–483.
- [17] Pitla S.S., Groll E.A., Ramadhyani S.: New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2. Int. J. Refrig. 25(2002), 887–895.
- [18] Fang X., Bullard C.W., Hrnjak P.S.: Heat transfer and pressure drop of gas coolers. ASHRAE Trans. 107(2001), 255–266.
- [19] Yoon S.H., Cho E.S., Hwang Y.W., Kim M.S., Min K., Kim Y.: Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development. Int. J. Refrig. 27(2004), 111–119.
- [20] Jung D.S., Radermacher R.: Prediction of pressure drop during horizontal annular flow boiling of pure and mixed refrigerants. Int. J. Heat Mass Tran. 32(1989), 2435–2466.
- [21] Goodman C., Fronk B.M., Garimella S.: Transcritical carbon dioxide microchannel heat pump water heaters: Part II – System simulation and optimization. Int. J. Refrig. 34(2011), 870–880.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3780-4453