Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider a four-level system with two subsystems coupled by weak interaction. The system is in thermal equilibrium. The thermodynamics of the system, namely internal energy, free energy, entropy and heat capacity, are evaluated using the canonical density matrix by two methods. First by Kronecker product method and later by treating the subsystems separately and then adding the evaluated thermodynamic properties of each subsystem. It is discovered that both methods yield the same result, the results obey the laws of thermodynamics and are the same as earlier obtained results. The results also show that each level of the subsystems introduces a new degree of freedom and increases the entropy of the entire system. We also found that the four-level system predicts a linear relationship between heat capacity and temperature at very low temperatures just as in metals. Our numerical results show the same trend.
Czasopismo
Rocznik
Tom
Strony
91--107
Opis fizyczny
Bibliogr. 30 poz.,
Twórcy
autor
autor
autor
autor
- Theoretical Physics Group, Department of Physics, University of Uyo, Nigeria, ola.awoga@yahoo.com
Bibliografia
- [1] Awoga Oladunjoye A., Ikot Akpan N., Essiett Aniesua A. and Akpabio Louis E.: Thermodynamic properties of the harmonic oscillator and four level system. Appl. Phys. Rese. 3(2011)1.
- [2] Kelly James J.: Physics 603: Methods of Statistical Physics. (2002), www.physics.umd.edu/courses/phys603/kelly/.
- [3] Yoshioka D.: Statistical Physics. Springer, New York 2007.
- [4] Nash Leonard K.: Elements of Statistical Thermodynamics. Addison-Wesley, Massachusetts 1974.
- [5] Margenau H., Murphy G.M.: The Mathematics of Physics and Chemistry. Van Nostrand, New York 1947.
- [6] Bence K.F., Hobson M.P. and Bence S.J.: Mathematical Methods for Physics and Engineering. Cambridge University Press, London 2002.
- [7] Arfken G.: Mathematical Method for Physicists. Academic Press Inc, New York 1980.
- [8] Ayres Frank, Jr: Theory and Problems of Matrices. McGraw Hill, New York 1964.
- [9] Cheng D., Qi H. and Xue A.: A survey on Semi-Tensor Product of Matrices. J. Sys. Sci. Complex. (2007), 304–322.
- [10] Cheng D.: Semi-tensor product of matrices and its application to Morgen’s problem. Sci. in China 44(2001), 3, 195–212.
- [11] Steeb W.: Matrix Calculus and Kronecker Product with Applications and C++ Programs. World Scientific, New York 1997.
- [12] Laub A.J.: Matrix Analysis for Scientists and Engineers. (2005) www.ecsecurehost.com/SIAM/ot91.html
- [13] Sethna J.P.: Entropy, Order Parameters and Complexity. Cladevon Press, Oxford 2006, 157–163.
- [14] Landau L.D. and Lifshitz E.M.: Statistical Physics. Pergamon Press, New York 1980, 195–198.
- [15] Davydov A.S.: Quantum Mechanics. Pergamon Press, New York 1991, 41–46.
- [16] Merzbacher E.: Quantum Mechanics. Wiley & Sons Inc., New York 1976, 278–291.
- [17] Messiah A.: Quantum Mechanics. Willey & Sons Inc., New York 1970, 331–338.
- [18] Feynman R.P.: Statistical Mechanics. Addison-Wesley, New York 1972.
- [19] Hanggi P. and Ingold G.: Quantum Brownian motion and the third law of thermodynamics. Acta Phys. Pol. B 37(2006), 5, 1537–1550.
- [20] Kozliak E. and Lambert F.L.: Residual entropy. The third law and latent heat. Entropy 10(2008), 274–284. doi:10.3390/e10030270, http://dx.doi.org/10.3390/e10030270.
- [21] Ingold G., Hanggi P. and Talkner P.: Specific heat anomalies of open quantum systems 2009 arxiv: quant-ph/0811.3509. doi:10.1103/physRevE.79.061105, http://dx.doi.org/10.1103/physRevE.79.061105.
- [22] Hanggi P. and Ingold L.: Fundamental aspects of quantum Brownian motion. Chaos (2005), 1–12. doi:10.1063/1.1853631, http://dx.doi.org/10.1063/1.1853631.
- [23] Ingold G., Lambert A. and Reynaud S.: Quantum dissipative Brownian motion and the Casimir effect. 2009 arxiv: quant-ph/0905.3608. doi:10.1103/PhysRevE.80.041113, http://dx.doi.org/10.1103/PhysRevE.80.041113.
- [24] Hijar H. and de Zarate J.O.: Jarzynski equality illustrated by simple examples. Euro. J. Phys. 31(2010), 1097–1106.
- [25] Tuckerman M.: Statistical Mechanics. (2006) www. Nyu.edu/classes/tuckerman//statmech/postscript/lecture4.pdf.
- [26] Mabuchi H.: Lecture Notes on Advanced Quantum Mechanics. (2000) www.iks.cultechedu/ /hmabuchi.ph125.html.
- [27] Andersen H.C.: Enthalpic- isobaric ensemble. J. Chem. Phys. 72(1980), 2384–2393.
- [28] Wark K.: Thermodynamics. McGraw Hill, New York 1977.
- [29] Kittel C.: Introduction to Solid State Physics, 6th edn. Willey & Sons Inc., New York 1986, 100–140.
- [30] Gradshteyn I.S. and Rhyzhik I.M.: Table of Integrals, Series and Product. Elsevier, Burlington 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3780-4431