PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Palaeoenvironmental significance of iron carbonate concretions from the Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Iron carbonate concretion horizons are characteristic features of the Bathonian (Middle Jurassic) claystone-mudstone succession at Gnaszyn. They occur in single horizons, which generally represent the same genetic type. The siderite concretions are the main type of iron carbonate concretions at Gnaszyn; a second type is represented by phosphate-siderite concretions. On the basis of the fieldwork, and their petrographical and mineralogical characteristics, the genesis of the concretions and their palaeoenvironmental significance is discussed. The results of this study (based on the localization, mode of occurrence, mineralogy of iron carbonate concretions and also the textural relationship between the concretions and host sediment layers) suggest an early diagenetic origin of the concretions. The preferential occurrence of the concretion horizons in single layers in the ambient sediments was associated with particular conditions of their deposition and early diagenesis, favored by a slower sedimentation rate and more intense bioturbation, and related primarily to the greater availability of reactive iron ions. From the viewpoint of physicochemical conditions the horizons with iron carbonate concretions in the study area reflect the redox boundary between oxic/bioturbated and anoxic/non-bioturbated zones. The conditions favoring the formation of such horizons was possibly due to longer periods of diminished sedimentation rate when the redox boundary remained in the same position within the sediment.
Rocznik
Strony
307--324
Opis fizyczny
Bibliogr. 70 poz.,
Twórcy
autor
Bibliografia
  • 1. Aller, R.C. 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology, 114, 331–345.
  • 2. Arthur, M.A. and Sageman, B.B. 1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22, 499–551.
  • 3. Berner, R.A. 1968. Calcium carbonate concretions formed by the decomposition of organic matter. Science, 159, 195–197.
  • 4. Berner, R.A. 1980. Early diagenesis: a theoretical approach, i-xii, 1–241. Princeton University Press; Princeton.
  • 5. Briggs D.E.G. and Kear A.J. 1994. Decay and mineralization of shrimps. Palaios, 9, 431–456.
  • 6. Canfield, D. E., 1989. Reactive iron in sediments. Geochimica et Cosmochimica Acta, 53, 619–632.
  • 7. Canfield, D. E., Jorgensen, B. B. Fossing, H., Glud, R., Gundersen, J., Ramsing, N.B., Thamdrup, B., Hansen, J.W., Nielsen, L.P., Hall, P.O. 1993. Pathways of organic carbon oxidation in three coastal sediments. Marine Geology, 113, 27–40.
  • 8. Coleman, M.L. 1985. Geochemistry of diagenetic non-silicate minerals: kinetic considerations. Philosophical Transactions of the Royal Society of London, 315, 39–56.
  • 9. Coleman, M.L. 1993. Microbial processes: control on the shape and composition of carbonate concretions. Marine Geology, 113, 127–140.
  • 10. Curtis, C.D. and Spears, D.A. 1968. Diagenetic iron minerals in some British Carboniferous sediments. Geochimica et Cosmochimica Acta, 31, 2109–2123.
  • 11. Curtis, C.D., Coleman, M.L. and Love, L.G. 1986. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochimica et Cosmochimica Acta, 50, 2321–2334.
  • 12. Dadlez, R. 1989. Epicontinental Permian and Mesozoic basins in Poland. Geological Quarterly, 33, 175–198. [In Polish with English summary]
  • 13. De Craen, M., Swennen, R. and Keppens, E. 1999. Petrography and geochemistry of septarian carbonate concretions from the Boom Clay Formation (Oligocene, Belgium). Geologie en Mijnbouw, 77, 63–76.
  • 14. De Kanel, J. and Morse, J.W. 1978. The chemistry of orthophosphate uptake from seawater into calcite and aragonite. Geochimica et Cosmochimica Acta, 42, 1335–1340.
  • 15. Dong, J., Shi Hong, Z., Gan Qing, J., Qingle, Z., Hai Yan, L., Xiao Yng, S. and Jun Lai, L. 2008. Early diagenetic growth of carbonate concretions in the upper Doushantuo Formation in South China and their significance for the assessment of hydrocarbon source rock. Science in China, Series D, Earth Sciences, 51, 1330–1339.
  • 16. Dutton, S. P., B. J., Willis, C. D., White, and J. P., Bhattacharya. 2000. Outcrop characterization of reservoir quality and interwell-scale cement distribution in a tide-influenced delta, Frontier Formation, Wyoming, USA. Clay Minerals, 35, 95–105.
  • 17. Froelich, P.N., Arthur, M.A., Burnett, W.C., Deakin, M., Hensley, V., Jahnke, R., Kaul, R., Kim, K.H., Roe K., Soutar, A. and Vathakanon, C. 1988. Early diagenesis of organic matter in Peru continental margin sediments: Phosphorite precipitation. Marine Geology, 80, 309–343.
  • 18. Gautier, D.L. 1982. Siderite concretions: indicators of early diagenesis in the Gammon Shales (Cretaceous). Journal of Sedimentary Petrology, 52, 859–871.
  • 19. Gautier, D.L. and Claypool, G.E., 1984. Interpretation of methanic diagenesis in ancient marine sediments by analogy with processes in modern diagenetic environments. In McDonald, D.A., and Surdam, R.C. (Eds), Clastic Diagenesis. AAPG Memoire, 37, 111–123.
  • 20. Gedl, P., Boczarowski, A., Dudek, T., Kaim, A., Kędzierski, M., Leonowicz, P., Smoleń, J., Szczepanik, P., Witkowska, M., and Ziaja, J. 2006. Stop B1.7-Gnaszyn clay pit (Middle Bathonian–lowermost Upper Bathonian). Lithology, fossil assemblages and paleoenvironment. 7th International Congress on the Jurassic System. September 6–18 2006, Kraków, Poland, 155–156. Polish Geological Institute, Warszawa.
  • 21. Gedl, P. and Kaim, A. 2012. Palaeoenvironmental reconstruction of Bathonian (Middle Jurassic) sediments at Gnaszyn, Kraków-Częstochowa Upland, Poland – introduction. Acta Geologica Polonica, 62 (3), 267–280.
  • 22. Goldhaber, M.B. and Kaplan, I.R. 1974. The sulfur cycle. In: E.D. Goldberg (Ed.), The Sea, 5, 569–655. Wiley-Interscience; New York.
  • 23. Hesselbo, S.P. and Palmer, T.J. 1992. Reworked early diagenetic concretions and the bioerosional origin of a regional discontinuity within British Jurassic marine mudstones. Sedimentology, 39, 1045–1065.
  • 24. Hounslow, M.W. 1998. Significance of localized pore pressures to the genesis of septarian concretions. Sedimentology, 44, 1133–1147.
  • 25. Irwin, H., Curtis, C. and Coleman, M.L. 1977. Isotopic evidence of source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269, 209–213.
  • 26. Jahnke, P.A. 1984. The synthesis and solubility of carbonate fluorapatite. American Journal of Science, 284, 58–78.
  • 27. Jarvis, I., Burnett, W.C., Nathan, Y., Almbaydin, F.S.M., Attia, A.K.M., Castro, L.N., Flicoteaux, R., Hilmy, M.E., Husain, V., Qutawnah, A.A., Serjani, A. and Zanin, Y.N. 1994. Phosphorite geochemistry: State-of-art and environmental concerns. Eclogae Geologica Helvetica, 87, 643–700.
  • 28. Katsev, S., Sundby, B. and Mucci, A. 2006. Modeling vertical excursions of the redox boundary in sediments: Application to deep basins of the Arctic Ocean. Limnology and Oceanography, 51, 1581–1593.
  • 29. Krajewski, K.P., Van Cappellen, P., Trichet, J., Kuhn, O., Lucas, J., Algarra, A.M., Prevot, L., Tewari, V., Gaspar, L., Knight, R.I. and Lamboy, M. 1994. Biological processes and apatite formation in sedimentary environments. Eclogae Geologica Helvetica, 87, 701–745.
  • 30. Krumbein, W.C. and Garrels, R.M. 1952. Origin and classification of chemical elements in term of pH and oxidationreduction potentials. Journal of Geology, 60, 1–33.
  • 31. Lash, G.G. and Blood, D. 2004a. Geochemical and textural evidence for early (shallow) diagenetic growth of stratigraphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York. Chemical Geology, 206, 407–424.
  • 32. Lash, G.G., and Blood, D.R. 2004b, Depositional clay fabric preserved in early diagenetic carbonate concretion pressure shadows, Upper Devonian (Frasnian) Rhinestreet shale, western New York: Journal of Sedimentary Research, 74, 110–116.
  • 33. Lucas, J. and Prèvôt, L.E. 1991, Phosphates and Fossil Preservation. In: Allison, P.A., Briggs, D.E.G. (Eds), Taphonomy. Releasing the Data Locked in the Fossil Record, pp. 389–405. Plenum Press; New York.
  • 34. Majewski, W. 2000. Middle Jurassic concretions from Częstochowa (Poland) as indicators of sedimentation rates. Acta Geologica Polonica, 50, 431–439.
  • 35. Marynowski L., Zatoń M., Simoneit B.R.T., Otto A., Jędrysek M.O, Grelowski C., Kurkiewicz S. 2007. Compositions, sources and depositional environments of organic matter from the Middle Jurassic clays of Poland. Applied Geochemistry, 22, 2456–2485.
  • 36. Matsumoto, R. and IIjama, A. 1981. Origin and diagenetic evolution of Ca-Mg-Fe carbonates in some coalfields of Japan. Sedimentology, 28, 239–259.
  • 37. Matyja, B.A. and Wierzbowski, A. 2003. Biostratygrafia amonitowa formacji częstochowskich iłów rudonośnych (najwyższy bajos-górny baton) z odsłonięć w Częstochowie. Tomy Jurajskie, 1, 3–6.
  • 38. Matyja, B.A. and Wierzbowski, A. 2006. Field Trip B1 – Biostratigraphical framework from Bajocian to Oxfordian. Stop B1.7 – Gnaszyn clay pit (Middle Bathonian-lowermost Upper Bathonian). Ammonite biostratigraphy. In: A. Wierzbowski, R. Aubrecht, J. Golonka, J. Gutowski, M. Krobicki, B.A. Matyja, G. Pieńkowski and A. Uchman (Eds), Jurassic of Poland and adjacent Slovakian Carpathians. Field trip guidebook, 154–155. 7th International Congress on the Jurassic System, 6–18 September 2006, Kraków, Poland.
  • 39. Maynard, J.B. 1983. Geochemistry of sedimentary ore deposits, 1–305. Springer-Verlag; New York.
  • 40. Middleton, H.A. and Nelson, C.S. 1996. Origin and timing of siderite and calcite concretions in late Palaeogene non- to marginal-marine facies of the Te Kuiti Group, New Zealand. Sedimentary Geology, 103, 93–115.
  • 41. Mozley, P.S. 1989. Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology, 17, 704–706.
  • 42. Mozley, P.S. and Carothers, W.W. 1992. Elemental and isotopic composition of siderite in the Kuparuk Formation, Alaska: effect of microbial activity and water/sediment interaction on early pore-water chemistry. Journal of Sedimentary Petrology, 62, 681–692.
  • 43. Mozley, P.S. and Wersin, P. 1992. Isotopic composition of siderite as an indicator of depositional environment. Geology, 20, 817–820.
  • 44. Oertel, G. and Curtis, C.D. 1972. Clay-Ironstone Concretion Preserving Fabrics Due to Progressive Compaction. Geological Society of America, 83, 2597–2606.
  • 45. Pearson, M.J. 1974. Siderite concretions from the Westphalian of Yorkshire: a chemical investigation of the carbonate phase. Mineralogical Magazine, 39, 696–699.
  • 46. Pye, K. 1984. SEM analysis of siderite cements in intertidal marsh sediments, Norfolk, England. Marine Geology, 56, 1–12.
  • 47. Pye, K., Dickson, J.A.D., Schiavon, N., Coleman, M.L. and Cox, M. 1990. Formation of siderite-Mg-calcite-iron sulphide concretions in intertidal marsh and sandflat sediments, north Norfolk, England. Sedimentology, 37, 325–343.
  • 48. Raiswell, R. 1971. The growth of Cambrian and Liassic concretions. Sedimentology, 17, 145–171.
  • 49. Raiswell, R. 1976. The microbiological formation of carbonate concretions in the Upper Lias of Northest England. Chemical Geology, 18, 227–244.
  • 50. Raiswell, R. and White, N.J.M. 1978. Spatial aspects of concretionary growth in the upper Lias of Northeast England, Sedimentary Geology, 20, 291–300.
  • 51. Raiswell, R. 1988. Chemical model for the origin of minor limestone-shale cycles by anaerobic methane oxidation. Geology, 16, 641–644.
  • 52. Raiswell, R. and Fisher, Q.J. 2000. Mudrock-hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition. Journal of the Geological Society, London, 157, 239–251.
  • 53. Raiswell, R. and Fisher, Q.J. 2004. Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP sediments: implications for the formation of concretions. Chemical Geology, 211, 71–85.
  • 54. Rajan, S., Mackenzie, F.T. and Craig, R.G. 1994. A thermodynamic model for water column precipitation of siderite I the Plio-Pleistocene Black Sea. American Journal of Science, 296, 506–548.
  • 55. Ratajczak, T. 1998. Hałdy po górnictwie rud żelaza w regionie częstochowskim – stan aktualny i możliwości zagospodarowania, 1–92. Wydawnictwo Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; Kraków.
  • 56. Różycki, S. 1953. Górny dogger i dolny malm Jury Krakowsko-Częstochowskiej. Instytut Geologiczny, Prace, 17, 1–412.
  • 57. Scotchman, I.C. 1991. The geochemistry of concretions from the Kimmeridge Clay Formation of southern and eastern England. Sedimentology, 38, 79–106.
  • 58. Seilacher, A. 2001. Concretion morphologies reflecting diagenetic and epigenetic pathways. Sedimentary Geology, 143, 41–57.
  • 59. Sitko. R., Zawisza, B., Krzykawski, T. and Malicka E. 2009. Determination of chemical composition of siderite in concretions by wavelength-dispersive X-ray spectrometry following selective dissolution. Talanta, 77, 1105–1110.
  • 60. Spears, D.A. 1989. Aspects of iron incorporation into sediments with special reference to the Yorkshire Ironstones. Geological Society of London, Special Publications, 46, 19–30.
  • 61. Szczepanik, P. 2006. Pyritization of the biogenic remains in the Middle Jurassic dark sediments of the Kraków-Częstochowa Upland. Unpublished Ph. D. thesis. Institute of Geological Sciences, Jagiellonian University, Kraków, Poland.
  • 62. Szczepanik, P., Witkowska, M. and Sawłowicz, Z. 2007. Geochemistry of Middle Jurassic mudstones (Kraków–Częstochowa area, southern Poland): interpretation of the depositional redox conditions. Geological Quarterly, 51, 57–66.
  • 63. Thamdrup, B. 2000. Bacterial manganese and iron reduction in aquatic sediments. In: B. Schink (Ed.), Advances in microbial ecology, pp. 41–84. Kluwer; New York.
  • 64. Wierzbowski, H. and Joachimski, M. 2007. Reconstruction of late Bajocian–palaeoenvironments using carbon ratios of calcareous fossils from (central Poland) Palaeogeography , Palaeoclimatology, Palaeoecology, 254, 523–540.
  • 65. Wignall, P.B. 1994. Black shales, 1–127. Oxford Univeristy Press; Oxford.
  • 66. Witkowska, M. 2005. Żelaziste konkrecje węglanowe w środkowojurajskich mułowcach z Gnaszyna koło Częstochowy. Przegląd Geologiczny, 53, 797.
  • 67. Zatoń, M. and Marynowski, L. 2004. Konzentrat-Lagerstättetype carbonate concretions from the uppermost Bajocian (Middle Jurassic) of the Częstochowa area, SW Poland. Geological Quarterly, 48, 339–350.
  • 68. Zatoń M., Marynowski L. 2006. Ammonite fauna from uppermost Bajocian (Middle Jurassic) calcitic concretions from the Polish Jura - biogeographical and taphonomical implications. Geobios, 39, 426–442.
  • 69. Zatoń, M., Marynowski, L. and Bzowska, G. 2006. Konkrecje hiatusowe z iłów rudonośnych Wyżyny Krakowsko-Częstochowskiej. Przegląd Geologiczny, 54, 131–138.
  • 70. Zatoń, M., Marynowski, L., Szczepanik, P., Bond, D.G. and Wignall, P.B. 2009. Redox conditions during sedimentation of the Middle Jurassic (Upper Bajocian–Bathonian) clays of the Polish Jura (south-central Poland). Facies, 55 (1), 103–114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3655-4165
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.