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Optimum heating of cylindrical pressure
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Abstract A method for determining time-optimum medium tempera-
ture changes is presented. The heating of the pressure elements will be
conducted so that the circumferential stress caused by pressure and fluid
temperature variations at the edge of the opening at the point of stress
concentration, do not exceed the allowable value. In contrast to present
standards, two points at the edge of the opening are taken into consider-
ation. The first point, P1, is located at the cross section and the second,
P2, at the longitudinal section of the vessel. It will be shown that the op-
timum temperature courses should be determined with respect to the total
circumferential stress at the point P2, and not, as in the existing standards
due to the stress at the point P1. Optimum fluid temperature changes are
assumed in the form of simple time functions. For practical reasons the
optimum temperature in the ramp form is preferred. It is possible to in-
crease the fluid temperature stepwise at the beginning of the heating process
and then increase the fluid temperature with the constant rate. Allowing
stepwise fluid temperature increase at the beginning of heating ensures that
the heating time of a thick-walled component is shorter than heating time
resulting from the calculations according to EN 12952-3 European Standard.
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1 Introduction

Optimization of heating and cooling of thick boiler components is the sub-
ject of many studies [1–4], since too rapid heating or cooling element causes
high thermal stresses [5]. The paper presents a new method of determining
the optimum fluid temperature changes during heating and cooling of thick
walled pressure vessels weakened by holes. Optimum temperature curve is
determined from the condition that the total circumferential stress, caused
by the thermal load and pressure, at the edge of the hole at the point P2

(Fig. 1) is equal to the permissible stress. Current standards limit the boiler

Figure 1. Pressure vessel – connector junction.

heating rate taking into account the stress at the point P1 (Fig. 1), because
at this point there is the greatest concentration of stresses from the pres-
sure. However, during pressure vessel heating, the stresses due to pressure
are tensile while the stresses from the thermal load are compressive and
they compensate each other.

At the same heating rate of the pressure element during the boiler start-
up, total circumferential or equivalent stress at the point P1 is smaller than
the corresponding stresses at the point P2. This is due to much lower
concentration of stress from the pressure at the point P2. In determining
the optimum heating rate or the optimum time changes of fluid temperature
in the vessel when with temperature increases the pressure, one must take
into account the point P2.
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2 Mathematical formulation of the problem

The previous optimization analysis shows [1] that the optimum fluid tem-
perature changes, Tf (t), obtained from the solution of the Volterra integral
equation of the first kind, can be well approximated by

Tf = T0 + a + b t + c/t , (1)

where: T0 – initial fluid temperature, a, b, c, – constants, t – time. At first,
the optimum fluid temperature changes are approximated by the function
Tf (t) (Fig. 2)

Tf = T0 + a + b t , (2)

which can easily be carried out in practice. The symbols in Eq. (3) stand
for: a – initial stepwise temperature increase, b – constant rate of fluid
temperature changes (Fig. 1).

The optimum values of parameters a, b and c appearing in the function
(1) or the parameters a and b in the function (3) will be determined from
the condition

σφ (rP2 , ti) ∼= σa , i = 1, ..., nt , (3)

where: σφ (rP2, ti) – summary circumferential stress at the point P2 due to
pressure and thermal load, rP2 – position vector of the point P2 at the edge
of the hole where the stress should be equal to the allowable stress (Fig. 1),
ti – i-th time step, nt – number of time steps in the analyzed period of time,
σa – allowable stress determined using current standards.

Figure 2. Functions used for approximation of optimum time changes of fluid tempera-
ture; a) function defined by Eq. (1), b) function defined by Eq. (3).
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The parameters a and b will be determined by the method of least
squares. The sum of squared differences of calculated stresses and allowable
stresses at selected nt times should be minimum

nt∑
i=1

⎡
⎣

ti∫
0

Tf (θ)
∂ u (rP2, t − θ)

∂t
dθ + αm (p − po)

din + s

2s
− σa

⎤
⎦

2

= min , (4)

where: u – thermal stress caused by stepwise temperature increase also
called influence function, αm – concentration factor for circumferential stress
caused by the pressure at the point P2 on the edge of the hole, p – absolute
pressure in the drum, po – ambient pressure, din – inner diameter of the
drum, s – drum wall thickness. Fluid temperature Tf (θ) was assumed as a
function (1) or (3).

Problem of seeking a minimum of function (6) is a parametric least
squares problem. Parameters x1 = a, x2 = b, x3 = c in the function (1),
or parameters x1 = a and x2 = b in the function (3) are to be searched.
Parameter values at which the sum of squares (6) is a minimum have been
determined by Levenberg-Marquardt method. This method is a combina-
tion of two methods: the method of steepest descent and the Gauss-Newton
method. At the beginning of the iterative process method of steepest de-
scent is applied, which is slowly convergent, but allows to find a solution
of the optimization problem even with not very accurate selection of initial
values x

(0)
1 and x

(0)
2 . To determine the values of parameters x1 and x2 near

the minimum of the function (6) the Gauss-Newton method is applied in
the next iteration steps. The advantage of this method is its high accu-
racy. This method can not be used from the very beginning of the iterative
process, because the wrong choice of initial values of searched parameters
causes the method is divergent. In the general case n-th dimensional vector
of unknown parameters x = (x1, . . . , xn)T is determined using the following
iterative procedure:

x(k+1) = x(k) + δ(k) , (5)

where

δ(k) =
[(

J(k)
m

)T
GfJ(k)

m + µ(k)In

] −1 (
J(k)

)T
Gf

[
f − Tm (x)

]
, (6)

and
Jm =

∂Tm (x)
∂xT

=
[(

∂Ti (x)
∂xj

)]
mxn

. (7)
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The following nomenclature has been adopted in Eqs. (6–7): Jm – Jacobian
matrix, Gf – matrix of weights, µ – weighting factor, In – identity matrix.
The upper index T denotes the matrix transpose, and (k) number of iter-
ation steps. The advantage of the method of Levenberg-Marquardt is its
fast convergence. The solution is usually found after a few iterations.

3 The results of calculations

Optimum fluid temperature changes during warm-up of the boiler drum
with an inner diameter din = 1700 mm and wall thickness s = 90 mm
were determined. The inner diameter of the downcomer is dwo = 90 mm
and wall thickness so = 6 mm. The following properties of steel were
adopted for the calculation: λ = 42 W/(mK); c = 538.5 J/(kgK); ρ =
7800 kg/m3; E = 1.96×1011 N/m2; β = 1.32×10−5 1/K, and ν = 0.3. The
heat transfer coefficient on the inner surface of the drum and downcomer
is: αin = 1000 W/(m2K). Allowable stress is: σa = −138.7 MPa. The
outer surface of the drum and downcomer are thermally insulated. Stress
concentration factor for the circumferential stress caused by the pressure
at the point P2 was determined by the finite element method (FEM) and
is: αm = 0.51. The division analyzed drum-downcomer junction on the
finite elements are shown in Fig. 3. The influence function, u, at the point
P2 is shown in Fig. 4 for different heat transfer coefficients, αin, at the
inner surface of drum and downcomer. This is the circumferential thermal
stress at the point P2, which has been determined using the FEM with a
stepwise temperature increase by 1 K. The analysis of Fig. 4 shows that the
maximum absolute value of the stress at the point P2 is greater the larger
is the value of the heat transfer coefficient, αin. The influence function,
u, at the point P2 as a function of time, t, and can be approximated by
a continuous function using the method of least squares. The following
function approximates well the calculation results:

u (t) = σφ(t) =
a + ct0.5 + et + gt1.5 + it2

1 + bt0.5 + dt + ft1.5 + ht2
, (8)

where u(t) is expressed in MPa/K, and time t in seconds.
The values of the coefficients appearing in function (8) for selected values
of the heat transfer coefficient, αin, are summarized in Tab. 1.

Optimum fluid temperature changes were estimated using the influ-
ence function for the heat transfer coefficient αin = 1000 W/(m2K). The

Authenticated | 195.187.97.1
Download Date | 12/12/12 9:53 AM



116 P. Dzierwa and J. Taler

Figure 3. Mesh of finite elements used for thermomechanical analysis of the drum –
downcomer junction.

Figure 4. Time changes of influence function.

course of circumferential stress at the point P2 as a function of time, which
is required to apply the method of Levenberg-Marquardt, was determined
using the Duhamel’s integral. Duhamel’s integral was evaluated by the
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Table 1. Constants appearing in function (8) for different heat transfer coefficients.

αin,
W/(m2K)

a b c d

500 0.0286681407184853 -0.0415608144447150 -0.2219682901729810 0.0048369728329664
1000 -0.0977213218969060 -0.0586092573488484 -0.3253429594268530 0.0077552803821987
1500 -0.1474428215903510 -0.0424849278266589 -0.4616645407079040 0.0074847664664757
2000 -0.0324517872429579 0.0243651192207815 -0.7325026091177960 0.0028930274058112
3000 -0.1799581418109710 0.0503498030917522 -0.9218388730309230 0.0029065544314647
αin,
W/(m2K)

e f g h

500 0.0065091396270584 -0.0001226804747822 -0.0000644617856678 0.0000015233096532
1000 0.0103313135659350 -0.0002404002542458 -0.0001042456130844 0.0000041332088797
1500 0.0175368805692370 -0.0002409711328650 -0.0002180845439745 0.0000048699130545
2000 0.0308818887401169 -0.0000371731499695 -0.0004266156063316 0.0000025675425876
3000 0.0401831963316867 -0.0000568628281854 -0.0005699783438759 0.0000048767423716

αin,
W/(m2K)

i Coefficient of de-
termination r2

500 0.0000002154380330 0.9999962577728130
1000 0.0000003295808135 0.9999441165145940
1500 0.0000008910457631 0.9999304103146090
2000 0.0000019284582020 0.9999762462132270
3000 0.0000026336042465 0.9999377933864930

method of rectangles. The optimum fluid temperature changes have been
determined for the pressureless state pn = 0 MPa and for nominal oper-
ation pressure pn = 10.87 MPa. The optimum fluid temperature changes
described by function (1) are presented in Fig. 5. Figure 6 depictes the
optimum fluid temperature changes approximated by the function (3). The
initial jump of the temperature is 48.6 K for gauge pressure pn = 0 MPa,
and 51.2 K for pn = 10.87 MPa. The analysis of the results illustrated
in Figs. 5 and 6 indicates that the drum pressure has little effect on the
optimum time changes of the fluid temperature. This is due to small value
of stress concentration coefficient at the point P2 for the stresses caused by
the pressure, which is only αm = 0.51. Optimum fluid temperature changes
approximated by the functions (1) and (3) were compared respectively for
the pressure pn = 0 MPa and pn = 10.87 MPa in Figs. 7 and 8.

It is seen that the differences in the optimum fluid temperature changes
are only in the beginning of the heating process. Plots of summary cir-
cumferential stress during the optimum heating process at the edge of the
hole at points P1 and P2 as a function of time are presented in Figs. 9–12.
During the start-up the total circumferential stress at the point P1 caused
by thermal load and the pressure is lower than at the point P2. Small ex-
cesses over the allowable stresses at the point P2 result from the assumed
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Figure 5. Optimum time changes of water
temperature Tf (t) in the drum
approximated by function (1)
pn = 0 MPa (a = 46.68 oC, b =
0.059 oC/s, c = 200.8 oCs) and
pn = 10.87 MPa (a = 49.24 oC,
b = 0.062 oC/s, c = 211.7 oCs).

Figure 6. Optimum time changes of water
temperature Tf (t) in the drum
approximated by function (3)
pn = 0 MPa (a = 48.56 oC, b =
0.057 oC/s) and pn = 10.87 MPa
(a = 41.22 oC, b = 0.061 oC/s).

Figure 7. Optimum time changes of wa-
ter temperature approximated
by the function (1) or (3) for
pn = 0 MPa.

Figure 8. Optimum time changes of wa-
ter temperature approximated
by the function (1) or (3) for
pn = 10.87 MPa.
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Figure 9. Total circumferential stresses
due to pressure and thermal at
points P1 and P2 during opti-
mum drum heating for pn =
0 MPa – optimum water temper-
ature changes approximated by
function (1).

Figure 10. Total circumferential stresses
due to pressure and thermal at
points P1 and P2 during opti-
mum drum heating for pn =
10.87 MPa – optimum water
temperature changes approxi-
mated by function (1).

forms of the functions given by Eq. (1) or (3). In the case of function (1)
the total stress at the point P2 are very close to the allowable stress. Only
at the beginning of the heating total stresses are slightly smaller than the
allowable stress. When the optimum fluid temperature is prescribed by the
ramp function (3), then the allowable stress is exceeded a little more at the
beginning of the heating process (Figs. 11 and 12).

This is due to too simple form of the function (3) approximating the
optimum temperature changes. However, the process of optimum fluid tem-
perature changes, which is characterized by an initial temperature jump
above the initial temperature of the pressure element and further increas-
ing the temperature witch a constant rate, is easy to implement in practice.
The initial temperature jump is easy to conduct in practice by flooding the
vessel with a hot water. Heating the drum with a constant rate can also be
easily performed in practice. In the case of the drum boiler water tempera-
ture in the evaporator can be raised with a constant rate controlling the flow
of the fuel mass supplied to the combustion chamber. From a mathematical
point of view, it is possible to find a better form of the function approx-
imating the optimum fluid temperature changes, it is however difficult to
carry out in practice.
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Figure 11. Total circumferential stresses
due to pressure and thermal at
points P1 and P2 during opti-
mum drum heating for pn =
0 MPa – optimum water tem-
perature changes approximated
by function (3).

Figure 12. Total circumferential stresses
due to pressure and thermal at
points P1 and P2 during opti-
mum drum heating for pn =
10.87 MPa – optimum water
temperature changes approxi-
mated by function (3).

4 Conclusions

The presented method for optimizing the start-up process can be used to
determine the optimum fluid temperature during the heating steam boiler
drums and pressure vessels of nuclear reactors. Because of the high thermal
stresses occurring at the point P2 at the edge of the hole, that is at the point
lying on the edge of the hole in the drum cross section, this stresses affect
the optimum process of heating. Compressive thermal stress at this point
is compensated in a small way by the tensile stress from the pressure. The
allowable fluid temperature changes during heating of thick-walled vessels
should be determined due to the stress at the point P2. Because of the pos-
sibility of practical implementation a more appropriate is the ramp function
for approximating optimum fluid temperature changes.

Received 1 August 2012
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