PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Calcareous nannofossils from the Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn as palaeoenvironmental indicator, Kraków-Silesia Homocline, Poland

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Qualitative and quantitative studies on calcareous nannofossils have been carried out on the Middle-Upper Bathonian succession of Gnaszyn (Kraków-Silesia Homocline, Częstochowa region). The nannofossil assemblages are moderately or well-preserved and are dominated by Watznaueria britannica; also common are Staurolithites lumina and Zeugrhabdotus erectus. The presence of delicate nannofossil forms together with dissolution-resistant taxa shows that the changes in composition of some of the nannoplankton assemblages reflect original variations. The frequency and diversity changes of the calcareous nannofossil assemblages have been interpreted in relation to fluctuations of sedimentation rate versus changes in trophic conditions within the photic zone. The highest diversity assemblages contain a high percentage of palaeofertility indicators, and are impoverished in the genus Watznaueria. This is interpreted as a reflection of a lower sedimentation rate and more stable, possibly mesotrophic conditions within the photic zone. On the other hand, W. britannica-dominated assemblages with low species diversity may represent more unstable environments with a high influx of terrestrial material related to a high sedimentation rate and a high nutrient influx, i.e. eutrophic conditions in the photic zone.
Rocznik
Strony
421--437
Opis fizyczny
Bibliogr. 54 poz.,
Twórcy
Bibliografia
  • 1. Andruleit, H., Stäger, S., Rogalla, U. and Čepek, P. 2003. Living coccolithophores in the northern Arabian Sea: ecological tolerances and environmental control. Marine Micropaleontology, 49, 157–181.
  • 2. Balch, W.M. 2004. Re-evaluation of the physiological ecology of coccolithophores. In: Coccolithophores. In: H.R. Thierstein and J.R Young (Eds), From Molecular Processes to Global Impact, pp. 165–190. Springer; Berlin, Heidelberg, New York.
  • 3. Billard, C. and Inouye, I. 2004. What is new in coccolithophore biology? In: H.R. Thierstein and J.R. Young (Eds), Coccolithophores. From Molecular Processes to Global Impact, pp. 1–29. Springer; Berlin, Heidelberg, New York.
  • 4. Burnett, J.A., Young, J.R. and Bown, P.R. 2000. Calcareous nannoplankton and climate change. In: S.J. Culver and P.F. Rawson (Eds), Biotic Response to Global Change. The Last 145 Milion Years, pp. 35–50. Cambridge University Press; Cambridge, New York, Melbourne.
  • 5. Bown, P.R. 1987. Taxonomy, biostratigrapy, and evolution of late Triassic-early Jurassic calcareous nannofossils. Special Papers in Palaeontology, 38, 1–118.
  • 6. Bown, P.R. and Cooper, M.K.E. 1998. Jurassic. In: P.R. Bown (Ed.), Calcareous Nannofossil Biostratigraphy, pp. 34–85. Kluwer Academic Publishers; Dordrecht, London, Boston.
  • 7. Bown, P.R., Burnett, J.A. and Gallagher, L.T. 1992. Calcareous nannoplankton evolution. Memorie di Scienze Geologiche già Memorie degli Istituti di Geologia e Mineralogia dell’Universita di Padova, 43, 1–17.
  • 8. Bown, P.R., Lees, J.A. and Young, J.R. 2004. Calcareous nannoplankton evolution and diversity through time, In: H.R. Thierstein and J.R. Young (Eds), Coccoltihophores. From Molecular Processes to Global Impact, pp. 481–508. Springer; Berlin, Heidelberg, New York.
  • 9. Bown, P.R. and Young, J.R. 1998a. Introduction. In: P.R. Bown (Ed.), Calcareous Nannofossil Biostratigraphy, pp. 1–15. Kluwer Academic Publishers; Dordrecht, London, Boston.
  • 10. Bown, P.R. and Young, J. R., 1998b. Techniques. In: P.R. Bown (Ed.), Calcareous Nannofossil Biostratigraphy, pp. 16–28. Kluwer Academic Publishers; Dordrecht, London, Boston.
  • 11. Brand, L.E. 1994. Physiological ecology of marine coccolithophores. In: A. Winter A. and W.G. Siesser (Eds), Coccolithophores, pp. 39–50. Cambridge University Press; Cambridge.
  • 12. Brummer, G.J.A. and Van Eijden, A.J.M. 1992. ‘Blue-ocean’ paleoproductivity estimates from pelagic carbonate mass accumulation rates. Marine Micropaleontology, 19, 99–117.
  • 13. Carcel, D., Colombié, C., Giraud, F. and Courtinat, B. 2010. Tectonic and eustatic control on a mixed siliciclastic-carbonate platform during the Late Oxfordian-Kimmeridgian (La Rochelle platform, western France). Sedimentary Geology, 223, 334–359.
  • 14. Erba, E. 1992. Middle Cretaceous calcareous nannofossils from the western Pacific (Leg 129): evidence for paleoequatorial crossing. Proc. ODP, Scien. Results, 129, 189–201.
  • 15. Falkowski, P.G., Schofield, O., Katz, M.E., Van de Schootbrugge, B. and Knoll, A.H. 2004. Why is the Land Green and the Ocean Red? In: H.R. Thierstein and J.R. Young (Eds), Coccoltihophores. From Molecular Processes to Global Impact, pp. 427–453. Springer; Berlin, Heidelberg, New York.
  • 16. Gedl, P. and Kaim, A. 2012. Palaeoenvironmental reconstruction of Bathonian (Middle Jurassic) sediments at Gnaszyn, Kraków-Częstochowa Upland, Poland – introduction. Acta Geologica Polonica, 62 (3), 267–280.
  • 17. Gedl, P., Kaim, A., Boczarowski, A., Kędzierski, M., Smoleń, J., Szczepanik, P., Witkowska, M. and Ziaja, J. 2003. Rekonstrukcja paleośrodowiska sedymentacji środkowojurajskich iłów rudonośnych Gnaszyna (Częstochowa) – wyniki wstępne. Tomy Jurajskie 1, 19–27. [In Polish]
  • 18. Giraud, F. 2009. Calcareous nannofossil productivity and carbonate production across the Middle-Late Jurassic transition in the French Subalpine Basin. Geobios, 42, 699–714.
  • 19. Giraud, F., Pittet, B., Mattioli, E. and Audouin, V. 2006. Paleoenvironmental controls on the morphology and abundance of the coccolith Watznaueria britannica (Late Jurassic, southern Germany). Marine Micropaleontology, 60, 205–225.
  • 20. Giraud, F., Courtinat, B. and Atrops, F. 2009. Spatial distribution patterns of calcareous nannofossils across the Callovian-Oxfordian transition in the French Subalpine Basin. Marine Micropaleontology, 72, 129–145.
  • 21. Hammer, Ø., Harper, D.A.T. and Ryan, P.D. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologica Electronica, 4, 9 pp. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  • 22. Herrle, J. O. 2003. Reconstructing nutricline dynamics of mid-Cretaceous oceans: evidence from calcareous nannofossils from the Niveau Paquier black shale (SE rance). Marine Micropaleontology, 47, 307–321.
  • 23. Hill, M.E. 1975. Selective dissolution of mid-Cretaceous (Cenomanian) calcareous nannofossils. Micropaleontology, 21, 227–235.
  • 24. Kaim, A. 2004. The evolution of conch ontogeny in Mesozoic open sea gastropods. Palaeontologia Polonica, 62, 3–183.
  • 25. Kaim, A. 2008. A review of gastropods from a Callovian (Middle Jurassic) glacial drift at Łuków, Eastern Poland. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 247, 161–176.
  • 26. Kaim, A. 2011. Non-actualistic wood-fall associations from Middle Jurassic of Poland. Lethaia, 44, 109–124.
  • 27. Lampert, L., Queguiner, B., Labasque, T., Pichon, A. and Leberton, N. 2002. Spatial variability of phytoplankton composition and biomass on the eastern continental shelf of the Bay of Biscay (north-east Atlantic Ocean). Evidence fro a bloom of Emiliania huxleyi (Prymnesiophyceae) in spring 1998. Continental Shelf Research 22, 1225–1247.
  • 28. Lees, J.A., Bown, P.R., Young, J. R. and Riding, J. B. 2004. Evidence for annual records of phytoplankton productivity in the Kimmeridge Clay Formation coccolith stone bands (Upper Jurassic, Dorset, UK). Marine Micropaleontology, 52, 29–49.
  • 29. Lees, J.A., Bown, P.R. and Mattioli, E. 2005. Problems with proxies? Cautionary tales of calcareous nannofossil palaeoenvironmental indicators. Micropaleontology, 51, 333–343.
  • 30. Lees, J.A., Bown, P.R. And Young, J.R. 2006. Photic zone palaeoenvironments of the Kimmeridge Clay Formation (Upper Jurassic, UK) suggested by calcareous nannoplankton palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 235, 110–134.
  • 31. Leonowicz, P. 2012. Sedimentology and ichnology of Bathonian (Middle Jurassic) orebearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland. Acta Geologica Polonica, 62 (3), 281–296.
  • 32. Majewski, W. 2000. Middle Jurassic concretions from Częstochowa (Poland) as indicators of sedimentation rates. Acta Geologica Polonica, 50, 431–439.
  • 33. Mattioli, E. and Pittet, B. 2002. Contribution of calcareous nannoplankton to carbonate deposition: a new approach applied to the Lower Jurassic of central Italy. Marine Micropaleontology, 45, 175–190.
  • 34. Matyja, B.A. and Wierzbowski, A. 2003. Biostratygrafia amonitowa formacji częstochowskich iłów rudonośnych (najwyższy bajos – górny baton) z odsłonięć w Częstochowie. Tomy Jurajskie, 1, 3–6. [In Polish]
  • 35. Matyja, B.A. and Wierzbowski, A. 2006. Stop B1.7 – Gnaszyn clay pit (Middle Bathonian-lowermost Upper Bathonian). Ammonite biostratigraphy. In: A. Wierzbowski et al. (Eds), Jurassic of Poland and adjacent Slovakian Carpathians, pp.154–155. Field trip guidebook of 7th International Congress on the Jurassic System. Polish Geological Institute; Warszawa.
  • 36. Okada, H. and Honjo, S. 1973. The distribution of oceanic coccolithophorids in the Pacific. Deep-sea Research, 20, 355–374.
  • 37. Olivier, N., Pittet, B. and Mattioli, E. 2004. Palaeoenvironmental control on sponge-microbialite reefs and contemporaneous deep-shelf marl-limestone deposition (Late Oxfordian, southern Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 212, 233–263.
  • 38. Painter, S.C., Poulton, A.J., Allen, J.T., Pidcock, R. and Balch, W.M. 2010. The COPAS’08 expedition to the Patagonian Shelf: Physical and environmental conditions during the 2008 coccolithophore bloom. Continental Shelf Research, 30, 1907–1923.
  • 39. Perch-Nielsen, K. 1985. Mesozoic calcareous nannofossils. Cenozoic calcareous nannofossils. In: H.M. Bolli, J.B. Saunders and K. Perch-Nielsen (Eds), Plankton stratigraphy, pp. 329–554. Cambridge University Press, Cambridge.
  • 40. Pianka, E. R. 1970. On r- and K-Selection. American Naturalist, 102, 592–597.
  • 41. Pittet, B. and Mattioli, E. 2002. The carbonate signal and calcareous nannofossil distribution in an Upper Jurassic section (Balingen – Tieringen, Late Oxfordian, southern Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 179, 71–96.
  • 42. Rost, B. and Riebesell, U. 2004. Coccolithophores and the biological pump: responses to environmental chnages, In: H.R. Thierstein and J.R. Young (Eds), Coccoltihophores. From Molecular Processes to Global Impact, pp. 99–125. Springer, Berlin, Heidelberg, New York.
  • 43. Roth, P. H. 1983. Jurassic and Lower Cretaceous calcareous nannofossils in the western North Atlantic (Site 534): biostratigraphy, preservation, and some observations on biogeography and palaeoceanography. Initial Reports of the Deep Sea Drilling Project, 76, 587–621.
  • 44. Roth, P. H. 1986. Mesozoic palaeoceanography of the North Atlantic and Tethys Oceans. In: C.P. Summerhayes and N.J. Shackleton (Eds), North Atlantic Palaeoceanography, Geological Society, London, Special Publication, 21, 299–320.
  • 45. Roth, P. H. and Bowdler, J. L. 1981. Middle Cretaceous calcareous nannoplankton biogeography and oceanography of the Atlantic and Indian oceans. SEPM Special Publications, 32, 517–546.
  • 46. Roth, P.H. and Krumbach, K.R. 1986. Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian Oceans: Implications for paleogeography. Marine Micropaleontology, 10, 235–266.
  • 47. Street, C. and Bown, P.R. 2000. Palaeobiogeography of Early Cretaceous (Berriasian-Barremian) calcareous nannoplankton. Marine Micropaleontology, 39, 265–291.
  • 48. Thierstein, H.R. 1980. Selective Dissolution of Late Cretaceous and Earliest Tertiary Calcareous Nannofossils: Experimental Evidence. Cretaceous Research, 2, 165–176.
  • 49. Thierstein, H.R., Geitzenauer, K.R. and Molfino, B. 1977. Global synchroneity of Late Quaternary coccolith datum levels: validation by oxygen isotopes. Geology, 5, 400–404.
  • 50. Thomsen, E. 1989. Seasonal variation in boreal early cretaceous calcareous nannofossils. Marine Micropaleontology, 15, 123–152.
  • 51. Watkins, D.K. 1989. Nannoplankton productivity fluctuations and rhythmically-bedded pelagic carbonates of the Greenhorn Limestone (Upper Cretaceous). Palaeogeography, Palaeoclimatology, Palaeoecology, 74, 75–86.
  • 52. Winter, A., Jordan, R.W. and Roth, P.W. 1994. Biogeography of living Coccolithophores in oceanic waters. In: A. Winter and W.G. Siesser (Eds), Coccolithophores, pp. 161–177. Cambridge University Press; Cambridge.
  • 53. Witkowska, M. 2012. Palaeoenvironmental significance of iron carbonate concretions from Middle Jurassic of Gnaszyn (Polish Jura Chain, southern Poland). Acta Geologica Polonica, 62 (3), 307–324.
  • 54. Young, J.R. 1994. Functions of coccolith. In: A. Winter and W.G. Siesser (Eds), Coccolithophores, pp. 63A. Winter and W.G. Siesser (Eds), Coccolithophores, pp. 82. Cambridge University Press; Cambridge.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3655-4095
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.