PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The usefulness of zooplankton as lake ecosystem indicators : Rotifer Trophic State Index

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Eutrophication is still one of the most important, world . wide problems of surface waters. During last decades there is the increasing demand for effective methods of monitoring systems based on biotic indices. For practical application, the monitoring tools must satisfy certain requirements: (1) sampling should be quick and easy; (2) indices should be straightforward to calculate. The aim of the study was to test the usefulness of rotifer abundance and species composition as indicators of trophic state of lakes. Data on rotifer densities and taxonomic composition were collected in 41 dimictic and 33 polymictic lakes situated in northeastern Poland. The samples were taken once a year, during the summer stagnation period at 1 m intervals from the surface to the bottom of the epilimnion layer in thermally stratified lakes and from the surface to the bottom of shallow lakes. The data were used to estimate the relationship between the rotifer community structure and the indices of trophic state of lakes (TSI), like concentration of chlorophyll a and Secchi.s disc visibility, (as the estimator of suspended particulate material in the water) calculated according to Carlson (1977) and widely used recently. The estimations were made separately for dimictic and polymictic lakes. However, regressions for the relationships between the trophic state of lakes based on mean values for Secchi.s disc (TSI[SD]) and chlorophyll a content (TSI[CHL]) and rotifer indices for both groups of lakes, usually were not different. Thus the same regression equations may be used for both dimictic and polymictic lakes.The following formulas for rotifer TSI index (TSI[ROT]) were found: (1) rotifer numbers (N, ind. L[^-1]): TSI[ROT1] = 5.38 Ln(N) + 19.28; (2) total biomass of rotifer community (B, mg w.wt. L[^-1]): TSI[ROT2] = 5.63 Ln(B) + 64.47; (3) percentage of bacterivores in total rotifer numbers (BAC, %): TSI[ROT3] = 0.23 BAC+ 44.30; (4) ratio of biomass to numbers (B:N, mg w.wt. ind.[^-1]): TSI[ROT4] = 3.85 (B:N)[^-0.318]; (5) percentage of the tecta form in the population of Keratella cochlearis (TECTA, %): TSI[ROT5] = 0.198 TECTA + 48.8 for dimictic lakes and TSI[ROT5] = 0.144 TECTA + 54.8 for polymictic ones; (6) contribution of species which indicate high trophic state in the indicatory group.s numbers (IHT, %): TSI[ROT6] = 0.203 IHT + 40.0. It was assumed that the lakes with a TSI[ROT ]under 45 are mesotrophic, those with a TSI[ROT] value of 45.55 are meso-eutrophic, 55.65 - eutrophic and those with a TSI[ROT] above 65 - hypertrophic. The formulas may be useful in preparing similar indices for lakes in central and northern Europe.
Słowa kluczowe
Rocznik
Strony
339--350
Opis fizyczny
Bibliogr. 42 poz.,Rys., tab.,
Twórcy
  • Institiute of Biology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland, jolanta@onet.pl
Bibliografia
  • 1. Allan J.D. 1976 – Life history patterns in zooplankton – Am. Nat. 110: 165–176.
  • 2. Balvay G. 1989 – Evolution de la biocénose rotatorienne au cours des variations de l’état trophique du Léman et comparaison avec le las de Constance – Revue des Sciences de L’eau, 2: 739–753.
  • 3. Balvay G., Laurent M. 1990a – Evolution qualitative à long terme des rotiféres du Lac Léman – Aquat. Sci. 52: 156–161.
  • 4. Balvay G., Laurent M. 1990b – Evolution quantitative à long terme des rotiféres au cours de l’eutrophisation du Lac Léman – Aquat. Sci. 52: 162–175.
  • 5. Beaver J.R., Crisman T.L. 1990 – Use of microzooplankton as an early indicator of advancing cultural eutrophication – Int. Verein. Theor. Ang. Limnol., Verhandlungen, 24: 532–537.
  • 6. Berzins B., Pejler B. 1989 – Rotifer occurrence and trophic degree – Hydrobiologia, 182: 171–180.
  • 7. Blancher E.C. 1984 – Zooplankton-trophic state relationships in some north and central Florida lakes – Hydrobiologia, 109: 251–263.
  • 8. Brodzińska B., Jańczak J., Kowalik A., Sziwa, R. 1999 – Atlas jezior Polski, tom III [The atlas of Polish lakes, volume 3] – Wydawnictwo Naukowe S.C. Poznań, 1–240 (in Polish).
  • 9. Carlson R.E. 1977 – Trophic state index for lakes – Limnol. Oceanogr. 22: 361–369.
  • 10. Dawes C.J., Cowell B.C., Gardiner W.E., Scheda S.M. 1987 – Limnological characteristics of two eutrophic and four mesotrophic lakes in west-central Florida – Intern. Revue ges. Hydrobiol. 72: 171–203.
  • 11. Duggan I.C., Green J.D., Shiel R.J. 2001 - Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state – Hydrobiologia, 446/447: 155–164.
  • 12. Ejsmont-Karabin J. 1998 – Empirical equations for biomass calculation of planktonic rotifers – Pol. Arch. Hydrobiol. 45: 513–522.
  • 13. Ejsmont-Karabin J., Hillbricht-Ilkowska A. 1994 – Illustration of the eutrophication process: comparison of rotifers from Mikołajskie Lake in the years 1989-1990 and 1963-1964 – Pol. Arch. Hydrobiol. 41: 477–487.
  • 14. Fuller D.R.,. Stemberger R.S., Gannon J.E. 1977 – Limnetic rotifers as indicators of trophic change – J. Elisha Mitch. Scie. Soc. 93: 104–113.
  • 15. Gannon J.E., Stemberger R.S. 1978 – Zooplankton (especially crustaceans and rotifers) as indicators of water quality – Trans. Amer. Microsc. Soc. 97: 16–35.
  • 16. Hakkari L. 1972 – Zooplankton species as indicators of environment – Aqua fenn.: 46–54.
  • 17. Hansson L.A., Gyllstro M.M., Stahl-Delbanco A. 2004 – Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution – Fresh. Biol. 49: 1538–1550.
  • 18. Harman C.D., Bayne D.R., West M.S. 1995 - Zooplankton trophic state relationships in four Alabama-Georgia reservoirs – Lake and Reservoir Management, 11: 299–309.
  • 19. Hessen D.O., Nilssen J.P. 1985 – Factors controlling rotifer abundances in a Norwegian eutrophic lake: an experimental study – Annls Limnol. 21: 97–105.
  • 20. Hillbricht-Ilkowska A. 1972 – Morphological variation of Keratella cochlearis (Gosse) (Rotatoria) in several Masurian lakes of different trophic level – Pol. Arch. Hydrobiol. 19: 253–264.
  • 21. Hillbricht-Ilkowska A. 1977 – Trophic relations and energy flow in pelagic plankton – Pol. Ecol. Stud. 3: 3–98.
  • 22. Jack J.D., Gilbert J.J. 1994 – Effects of Daphnia on microzooplankton communities – J. Plank. Res. 16: 1499–1512.
  • 23. Karabin A. 1985 – Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. I. Structural and quantitative features – Ekol. Pol. 33: 567–616.
  • 24. Kufel L. 1999 – Dimictic versus polymictic Masurian lakes: similarities and differences in chlorophyll-nutrient-SD relationships – Hydrobiologia, 408/409: 389–394.
  • 25. Mäemets A. 1983 – Rotifers as indicators of lake types in Estonia – Hydrobiologia, 104: 357–361.
  • 26. Matveeva L.K. 1991 – Planktonnye kolovratki kak indikatory trofnosti – Bjull. Moskov. Ob. Ispyt. Prir., Otd. Biologii, 96: 54–62 (in Russian).
  • 27. May L., O’Hare M. 2005 – Changes in rotifer species composition and abundance along a trophic gradient in Loch Lomond, Scotland, UK – Hydrobiologia, 546: 397–404.
  • 28. MacIsaac H.J., Gilbert J.J. 1989 – Competition between rotifers and cladocerans of different body sizes – Oecologia, 81: 295–301.
  • 29. Neill W.E. 1984 – Regulation of rotifer densities by crustacean zooplankton in an oligotrophic montane lake in British Columbia – Oecologia (Berlin), 61: 175–181.
  • 30. Nõges P., van de Bund W., Cardoso A.C., Solimini A.G., Heiskanen A.-S. 2009 - Assessment of the ecological status of European surface waters: a work in progress – Hydrobiologia, 633: 197–211.
  • 31. Pace M.L. 1986 – An empirical analysis of zooplankton community size structure across lake trophic gradients – Limnol. Oceanogr. 31: 45–55.
  • 32. Pejler B. 1965 – Regional-ecological studies of Swedish fresh-water zooplankton – Zoologiska Bidrag., Uppsala, 36: 407–515.
  • 33. Pejler B. 1975 – On long-term stability of zooplankton composition – Inst. of Freshw. Res., Drottningholm, Report, 54: 107–117.
  • 34. Pejler B. 1981 – On the use of zooplankters as environmental indicators (In: Some Approaches to Saprobiological Problems, Ed: M. Sudzuki) – Sanseido Co. Ltd., Tokyo, pp. 9–12.
  • 35. Pejler B. 1983 – Zooplanktic indicators of trophy and their food – Hydrobiologia, 101: 111–114.
  • 36. Radwan S. 1973 – Wrotki pelagiczne jezior Pojezierza Łęczyńsko-Włodawskiego. Studium faunistyczno-ekologiczne [Pelagic rotifers of the Łęczyńsko-Włodawskie Lakeland. Faunistic and ecological studies] – Akademia Rolnicza Lublin, Ser. Wyd., Rozprawy Naukowe, 8: 1–57 (in Polish).
  • 37. Steinberg A., Ejsmont-Karabin J., Muirhead J.R., MacIsaac H.J. 2009 – Spatial and temporal stability of rotifer communities - Hydrobiologia, 624: 107–114.
  • 38. Sterzyński W. 1979 – Fecundity and body size of planktic rotifers in 30 Polish lakes of various trophic state – Ekol. Pol. 27: 307–321.
  • 39. Trifonova I.S., Ignat’eva N.V., Maslevcov V.V., Ostrovskaya T.A. 1986 – Za visimost’ pokazateley letnego planktona ot soderzhaniya biogennykh elementov v malykh ozerakh Latgalii s raznym urovnem antropogennogo evtrofirovaniya – Ekologiya, 5: 31–38 (in Russian).
  • 40. Walz N., Elster H.J., Mezger M. 1987 – The development of the rotifer community structure in Lake Constance during its eutrophication – Arch. Hydrobiol., Suppl. 74: 452–487.
  • 41. Xiong J., Mei X., Liu J. 2003 – Comparative studies on community structure, biodiversity of plankton and zoobenthos in four lakes of different trophic states in China – Asian Fish. Sci. 16: 361–372.
  • 42. Yoshida T., Urabe J., Elser J.J. 2003 – Assessment of ‘top-down’ and ‘bottom-up’ forces as determinants of rotifer distribution among lakes in Ontario, Canada – Ecol. Res. 18: 639–650.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3625-4046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.