PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Response of alpine plant community to simulated climate change : two-year results of reciprocal translocation experiment (Tibetan Plateau)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The great sensitivity of the response of alpine plant community to climate change makes the identification of these responses important. In 2007, we conducted a reciprocal translocation experiment on 100 x 100 x 40 cm coherent turf and soil along an elevation gradient of 3200.3800 m on the south slope of Qilian Mountains northeast of the Qinghai-Tibetan Plateau. The aim was to understand the warming/cooling effects on the alpine ecosystem where treatments were simulated by donor elevations below/above receptors. Translocated vegetation comprised the Kobresia meadow at 3200 m, deciduous shrub meadow at 3400 m, forbs meadow at 3600 m, and sparse vegetation at 3800 m. The 5 x 5 cm grid method (50 x 50 cm, 100 grids) was used for surveying plant species absolute abundance in translocated quadrats. Results showed that species richness and Shannon-Weaver index of Kobresia meadow increased significantly (P <0.05) when translocated to 3400 m. Shannon-Weaver index of shrub meadow declined, while shrub species abundance responded slightly both to warming and cooling treatments. Both species richness and Shannon-Weaver index of forbs meadow and sparse vegetation were enhanced evidently at 3200 m and 3400 m. Four groups were identified by non-metric multidimensional scaling based on receptor elevation. Responses of the alpine plant community and the function group appeared to be specific to climate magnitude and specific to function type, respectively. Correlation indicated that climatic factors played a much more important role than soil in the response of the alpine plant community. Four vegetation types were sensitive to climate change, while Kobresia meadow behaved flexibly. Global warming would depress sedges but favor legumes and graminoids.
Rocznik
Strony
741--751
Opis fizyczny
Bibliogr. 33 poz.,Rys., tab.,
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, Sichuan, 610071, China ; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China, fwzhang@nwipb.cas.cn
Bibliografia
  • 1. Bruelheide H. 2003 – Translocation of a montane meadow to simulate the potential impact of climate change – Appl. Vege. Sci. 6: 23–34.
  • 2. Cannone N., Sgorbati S., Guglielmin M. 2007 – Unexpected impacts of climate change on alpine vegetation – Front. Ecol. Envir. 5: 360–364.
  • 3. Chapin F.S., Shaver G.R., Giblin A.E., Nadelhoffer K.J., Laundre J.A. 1995 – Responses of Arctic Tundra to Experimental and Observed Changes in Climate – Ecology, 76: 694–711.
  • 4. Clarke K.R. 1993 – Non-parametric multivariate analyses of changes in community structure – Aust. J. Ecol. 18: 117–143.
  • 5. Cross M.S., Harte J. 2007 – Compensatory responses to loss of warming-sensitive plant speices – Ecology, 88: 740–748.
  • 6. Dunne J.A., Saleska S.R., Fischer M.L., Harte J. 2004 – Integrating experimental and gradient methods in ecological climate change research – Ecology, 85: 904–916.
  • 7. Epstein H., Walker M., Chapin III F.S., Starfield A. 2000 – A transient, nutrientbased model of arctic plant community response to climatic warming – Ecol. Appl. 10: 824–841.
  • 8. Eviner V.T., Chapin III F.S. 2003 – Functional matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes – Annu. Rev. Ecol. Syst. 34: 455–485.
  • 9. Hart S.C. 2006 – Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests: a soil transfer study – Global. Change. Biol. 12: 1032–1046.
  • 10. Harte J., Shaw R. 1995 – Shifting Dominance Within a Montane Vegetation Community: Results of a Climate-Warming Experiment – Science, 267: 876–880.
  • 11. Hollister R.D., Webber P.J., Tweedie C.E. 2005 – The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses – Global. Change. Biol. 11: 525–536.
  • 12. Ineson P., Taylor K., Harrison A.F., Poskitt J., Benham D.G., Tipping E., Woof C. 1998 – Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach – Global. Change. Biol. 4: 143–152.
  • 13. IPCC 2007 – Climate Change 2007 - The Physical Science Basis:Working Group I Contribution to the Fourth Assessment Report of the IPCC – Cambridge University Press, Cambridge.
  • 14. Jónsdóttir I. S., Magnússon B., Gudmundsson J., Elmarsdóttir Á., Hjartarson H. 2005 – Variable sensitivity of plant communities in Iceland to experimental warming – Global. Change. Biol. 11: 553–563.
  • 15. Körner C. 1999 – Alpine plant life: functional plant ecology of high montian ecosystems – Springer-Verlag, Berlín & Heidelberg, 344 pp.
  • 16. Klanderud K. 2008 – Species-specific responses of an alpine plant community under simulated environmental change – J. Veg. Sci. 19: 363–372.
  • 17. Klanderud K., Totland O. 2005 – Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot – Ecology, 86: 2047–2054.
  • 18. Klein J. A., Harte J., Zhao X. Q. 2004 – Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau – Ecol. Lett. 7: 1170–1179.
  • 19. Klein J.A., Harte J., Zhao X.Q. 2007 – Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau – Ecol. Appl. 17: 541–557.
  • 20. Lesica P., McCune B. 2004 – Decline of arctic-alpine plants at the southern margin of their range following a decade of climatic warming – J. Veg. Sci. 15: 679–690.
  • 21. Li W., Zhang Y., Wang Y. 2009 – Invasion of Descurainia sophia (L.) (Cruciferae) in alpine meadow is enhanced by ground disturbance made by Myospalax fontanierii (Milne-Edwards) – Pol. J. Ecol. 57: 389–393.
  • 22. Melick D.R., Seppelt R.D. 1997 – Vegetation patterns in relation to climatic and endogenous changes in Wilkes Land, continental Antarctica – J. Ecol. 85: 43–56.
  • 23. Read D.J., Leake J.R., Perez-Moreno J. 2004 – Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes – Can. J. Bot. 82: 1243–1263.
  • 24. Wahren C.H.A., Walker M.D., Bret-Harte M.S. 2005 – Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment – Global. Change. Biol. 11: 537–552.
  • 25. Walker M.D., Wahren C.H., Hollister R.D., Henr y G.H.R., Ahlquist L.E., Alatalo J.M., Bret-Harte M.S., Calef M.P., Callaghan T.V., Carroll A.B., Epstein H.E., Klein J.A., Molau U., Oberbauer S.F., Rewa S.P., Robinson C.H., Shaver G.R., Suding K.N., Thompson C.C., Tolvanen A., Turner P.L., Tweedie C.E., Webber P.J., Wookey P.A. 2006 – Plant community responses to experimental warming across the tundra biome – P. Natl. Acad. Sci. Usa. 103: 1342–1346.
  • 26. Walther G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J.-M., Hoegh-Guldberg O., Bairlein F. 2002 – Ecological responses to recent climate change – Nature, 416: 389–395.
  • 27. Wittebolle L., Marzorati M., Clement L., Balloi A., Daffonchio D., Heylen K., De Vos P., Verstraete W., Boon N. 2009 – Initial community evenness favours functionality under selective stress – Nature, 458: 623–626.
  • 28. Wookey P.A., Aerts R., Bardgett R.D., Baptist F., Brathen K.A., Cornelissen J.H.C., Gough L., Hartley I.P., Hopkins D.W., Lavorel S., Shaver G.R. 2009 – Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change – Global. Change. Biol. 15: 1153–1172.
  • 29. Yao T.D., Thompson L.G., Qin D.H., Tian L.D., Jiao K.Q., Yang Z.H., Xie C. 1996 – Variations in temperature and precipitation in the past 2000 a on the Xizang (Tibet) Plateau-Guliya ice core record – Sci. China Ser. D. 39: 425–433 (in Chinse, English abstract).
  • 30. Zhang F.W., Li H.Q., Li Y.N., Li Y.K., Li L. 2009 – Periodic fluctuation features of air temperature, percipitation, and aboveground net primary porduction of alpine meadow ecosystem on Qinghai-Tibetan Plateau – Chinese. J. Appl. Ecol. 20: 525–530 (in Chinse, English abstract).
  • 31. Zhang Y.Q., Zhou X.M. 1992 – The Quantitative classification and ordination of haibei alpine meadow – Acta Phytoecol Geobot Sin. 16: 36–42 (in Chinse, English abstract).
  • 32. Zhou H.K., Zhou L., Zhao X.Q., Liu W., Li Y.N., Gu S., Zhou X.M. 2006 – Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau – Chinese. Sci. Bull. 51: 320–327 (in Chinse, English abstract).
  • 33. Zhou X.M., Wu Z.. 2006 – Vegetation and Plant Keys in Haibei Alpine Ecosystem Research Station, CAS – Qinghai People Press, Xining, 3–36 pp. (in Chinse, English abstract).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3625-4022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.