Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Landscape scale of topography-soil-vegetation relationship : influence of land use and land form

Warianty tytułu
Języki publikacji
This article presents the effects exerted by the differences in land use on the relationships between soil and vegetation along a topographical gradient (catena). In the study 35 plots (20 m2, with 2 m up and 10 m across the slope) from two transects (forest - 2600 m and field - 1400 m, (with the lowest plot at 209.6 m a.s.l., and the highest at 253.5 m a.s.l. the lowest at 199.7 m a.s.l. and the highest at 230 m a.s.l, respectively) were selected and classified into three groups (depletion, transition, accumulation), depending upon the processes of erosion or accumulation. The analysed variables were following: topographical characteristics, soil parameters, number of vascular plant species, and geobotanical indicators as soil moisture (Fwm), soil acidity (Rwm), nitrogen content in the soil (Nwm) according to Ellenberg (Ellenberg et al. 1991), soil humus and organic matter (Hwm) and soil dispersion and aeration (Dwm) according to Zarzycki (Zarzycki et al. 2002). The analyses showed that relationships between hypsometry, soil characteristics and geobotanical indicators were different, depending on land use (forest versus field). Regression models, which were similar for both transects, concern the following pair of variables: soil pH - slope; soil conductivity - elevation; soil moisture - elevation; soil carbon content - elevation; Rwm index . elevation; species number - soil carbon content. The following significant relationships were specific only for the forest transect: C:N ratio - slope and curvature, species number - soil nitrogen content; Rwm index - soil pH. For the field transect the relations between the geobotanical indicators and the properties of the soil are specific like for the pairs: Fwm index - soil moisture, Rwm index - soil moisture and nitrogen content, Hwm index - C:N ratio, Dwm index - nitrogen content. In general, the modifying influence of land use on the values of soil and vegetation parameters is weakly distinguished in the upper parts of both transects, and the most significant on the slopes, within the transition zone. The results of our studies should be useful in modelling of hydrological and geo-chemical relations, especially with respect to small catchment areas, in determination of carbon reserves, as well as in planning of sustainable landscape.
Opis fizyczny
Bibliogr. 48 poz.,Rys., tab.,
  • Department of Geoecology and Climatology, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Twarda 51/55, PL-00-918 Warsaw, Poland,
  • 1. Bio A.M.F., Becker P., Bie E.D., Huybrechts W., Wassen M. 2002 – Prediction of plant species distribution in lowland river valleys in Belgium: modelling species response to site conditions – Biodivers. Conserv. 11: 2189–2216.
  • 2. Burrough P.A., Wilson J.P., van Gaans P.F.M., Hansen A.J. 2001 – Fuzzy k-means classification of topo-climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA – Landscape Ecol. 16: 523–546.
  • 3. Chen Z.-S., Hsieh C.-F., Jiang F.-Y., Hsieh T.-H., Sun I.-F. 1997 – Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan - Plant Ecol. 132: 229–241.
  • 4. Davies K.W., Bates J.D., Miller R.F. 2007 - Environmental and vegetation relationships of the Artemisia tridentate spp. wyomingensis alliance – J. Arid. Environ. 70: 478–494.
  • 5. Degórski M. 2007 – Spatial Variability in Podzolic Soils of Central and Northern Europe – U.S. Environmental Protection Agency (EPA), Washington, D.C. 178 pp.
  • 6. Diekmann M. 2003 – Species indicator values as an important tool in applied plant ecology – a review – Basic. Appl. Ecol. 4: 1–14.
  • 7. Dobrzański B., Uziak S. 1972 – Rozpoznawanie i analiza gleb [Recognising and Analysis of Soil] – PWN, Warszawa (in Polish).
  • 8. Dziadowiec H., Gonet S. 1999 – Przewodnik metodyczny do badań materii organicznej gleb [Guide-book for the methodology in soil organic matter research] – Prace Kom. Nauk, PTGleb. vol. 120, Warszawa (in Polish).
  • 9. Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulissen D. 1991 – Zeigerwerte von Pflanzen in Mitteleuropa – Scr. Geobot. 18, Göttingen.
  • 10. Fu B., Chen L., Ma K., Zhou H., Wang J. 2000 – The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China – Catena, 39: 69–78.
  • 11. Fu B., Wang J., Chen L, Qiu Y. 2003 – The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China – Catena, 54: 197–213.
  • 12. Gerrard A.J. 1981 – Soils and Landforms – George, Allen and Unwin, London.
  • 13. Johnson C.E., Ruiz-Mendez J.J., Lawrence G.B. 2000 – Forest soil chemistry and Terrain attributes in a Catskill watershed – Soil Sci. Soc. Am. J. 64: 1804–1814.
  • 14. Kosmas C., Gerontidis St., Marathianou M. 2000 – The effect of land use change on soils and vegetation over various lithological formations on Lesvos (Greece) – Catena, 40: 51–68.
  • 15. Kostrowicki A., Solon J. (Eds.). 1994 – Studium geobotaniczno-krajobrazowe okolic Pińczowa [Geobotanical and lanscape case–study in the Pińczów area] – Dokum. Geogr. 1–2, Warszawa, 197 pp. (in Polish).
  • 16. Lemenih M., Itanna F. 2004 – Soil carbon stocks and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia – Geoderma, 123: 177–188.
  • 17. Lindacher R. (Ed.). 1995 – Phanart Datenbank der Gefässpflanzen Mitteleuropas, Erklärung der Kennzahlen, Aufbau und Inhalt (Phanart, Database of Centraleuropean Vascular Plants, Explanation of codes, Structure and Contents) – Veröffentlichungen Geobotanischen Institut der ETH Stiftung Rübel, Vol. 125, Zürich.
  • 18. Mackensen J., Tillery-Stevens M., Klinge R., Folster H. 2000 – Site-parameters, species composition, phytomass structure and element stores of a terra-firme forest in East-Amazonia – Brazil. Plant Ecol. 151: 101–119.
  • 19. Matuszkiewcz W. 2001 – Przewodnik do oznaczania zbiorowisk roślinnych Polski [Guide for Polish plant communities] – Wyd. Nauk. PWN, 537 pp. (in Polish).
  • 20. McIntosh P.D., Lynn I.H., Johnstone P.D. 2000 – Creating and testing a geometric soil-landscape model in dry steeplands using a very low sampling density – Aust. J. Soil. Res. 38: 101–112.
  • 21. Monger H.C., Bestelmeyer B.T., 2006 - The soil-geomorphic template and biotic change in arid and semi-arid ecosystems – J Arid. Environ. 65: 207–218.
  • 22. Oztas T., Koc A., Comakli B. 2003 – Changes in vegetation and soil properties along a slope on overgrazed and eroded rangelands – J Arid. Environ. 55: 93–100.
  • 23. Pachepsky Y.A., Timlin D.J., Rawls W.J., 2001 – Soil water retention as related to topographic variables – Soil. Sci. Soc. Am. J. 65: 1787–1795.
  • 24. Rezaei S.A., Gilkes R.J. 2005a – The effects of landscape attributes and plant community on soil physical properties in rangelands – Geoderma, 125: 145–154.
  • 25. Rezaei S.A., Gilkes R.J. 2005b – The effects of landscape attributes and plant community on soil chemical properties in rangelands – Geoderma, 125: 167–176.
  • 26. Roo-Zielińska E. 2004 – Fitoindykacja jako narzędzie oceny środowiska fizycznogeograficznego. Podstawy teoretyczne i analiza porównawcza stosowanych metod [Phytoindication as a tool in the evaluation of geographical environment. Theoretical basis and comparative analysis of the methods applied] - Prace Geogr. IGiPZ PAN, Warszawa, 199 pp. (in Polish).
  • 27. Roo-Zielińska E., Solon J., Degórski M. 2007 – Ocena stanu i przekształceń środowiska przyrodniczego na podstawie wskaźników geobotanicznych, glebowych i krajobrazowych. Podstawy teoretyczne i przykłady zastosowań [Evaluation of natural environment based on geobotanical, landscape and soil indicators] – Monografie IGiPZ PAN, 9, 317 pp. (in Polish).
  • 28. Schaffers A.P., Sykora K.V. 2000 – Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements – J. Veg. Sci. 11: 225–244.
  • 29. Sebastia M.-T. 2004 – Role of topography and soils in grassland structuring at the landscape and community scales – Basic. Appl. Ecol. 5: 331–346.
  • 30. SGP 2008 – Systematyka Gleb Polski [Polish Soil Taxonomy] – Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, Poznań (in Polish).
  • 31. Sivapalan M. 2003. Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? – Hydrol. Process. 17: 1037–1041.
  • 32. Small C.J., McCarthy B.C. 2005 – Relationship of understory diversity to soil nitrogen, topographic variation, and stand age in an eastern oak forest USA – Forest Ecol. Manage. 217: 229–243.
  • 33. Smith J.L., Halvorson J.J., Bolton Jr H. 2002 – Soil properties and microbial activity across a 500 m elevation gradient in a semiarid environment – Soil. Biol. Biochem. 34: 1749–1757.
  • 34. Solon J., Roo-Zielińska E. 2001 – Bogactwo gatunkowe zbiorowisk roślinnych w okolicach Pińczowa, a ich wymagania ekologiczne [Species richness of plant communities versus their ecological demands] – Prace Geogr. 179: 209–225 (in Polish).
  • 35. Solon J., Degorski M., Roo-Zielinska E. 2007 – Vegetation response to a topographical-soil gradient – Catena, 71: 309–320.
  • 36. Solon J., Roo-Zielińska E., Degórski M. 2006 – Związki między roślinnością a glebą w zależności od sposobu użytkowania ziemi jako podstawa modelowania krajobrazu (na przykładzie okolic Młodzaw koło Pińczowa) [Landscape structure modeling based on land-use and Vegetation-Soil relationship (Młodzawy near Pińczów case study)] – Problemy Ekologii Krajobrazu, XVI/1: 87–100 (in Polish).
  • 37. Tan Z.X., Lal R., Smeck N.E., Calhoun F.G. 2004 – Relationships between surface soil organic carbon pool and site variables – Geoderma, 121: 187–195.
  • 38. Thanachit S., Suddhiprakarn A., Kheoruenromne I., Gilkes R.J. 2006 – The geochemistry of soils on a catena on basalt at Khon Buri, northeast Thailand – Geoderma, 135: 81–96.
  • 39. Tromp-van Meer veld H.J., McDonnell J.J. 2006 – On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale – Adv. Water Resour. 29: 293–310.
  • 40. Williams A.G., Ternan J.L., Fitzjohn C., De Alba S., Perez-Gonzalez A. 2003 – Soil moisture variability and land use in a seasonally arid environment – Hydrol. Process, 172: 225–235.
  • 41. Whittaker R.H. 1967 – Gradient analysis of vegetation – Biological Review, 42: 207–264.
  • 42. World Reference Base for Soil Resources (WRB) 1998 – World Soil Resources Reports. 84, FAO, ISRIC and ISSS, Rome.
  • 43. World Reference Base for Soil Resources (WRB) 2006 – A framework for international classification correlation and communication – World Soil Resources Reports, 103, FAO, Rome.
  • 44. Wu R., Tiessen H. 2002 – Effect of Land Use on Soil Degradation in Alpine Grassland Soil, China – Soil Sci. Soc. Am. J. 66: 1648–1655.
  • 45. Xu J.C., Sharma R., Fang J., Xu Y.F. 2008 - Critical linkages between land-use transition and human health in the Himalayan region – Environ. International, 34: 239–247.
  • 46. Yimer F., Messing I., Ledin S., Abdelkadir A. 2006 – Effects of different land use types on infiltration capacity in a catchment in the highlands of Etiopia – Soil Use Manage. 24: 344–349.
  • 47. Zarzycki K., Trzcińska-Tacik H., Różański W., Szeląg Z., Wołek J., Korzeniak U. 2002 – Ecological indicator values of vascular plants of Poland. Ekologiczne liczby wskaźnikowe roślin naczyniowych Polski – W. Szafer Institute of Botany, Pol. Acad. Sci. Kraków, 183 pp.
  • 48. Zuo X., Zhao, X., Zhang, T., Guo, Y., Wang S., Drake S. 2008 – Spatial pattern and heterogeneity of soil properties in sand dune under grazing and restoration in Horquin Sandy land, Northern China – Soil Till. Res. 99: 202–212.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.