Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Different antibiotic resistance of neustonic and planktonic bacteria in a freshwater coastal lake : implication for strain selection

Warianty tytułu
Języki publikacji
Antibiotic resistance of bacteria was observed in various aquatic environments including seas, rivers, lakes, coastal areas, surface water and sediments. The increased implementation of antibiotics into these environments through medical therapy, agriculture and animal husbandry has resulted in new selective pressures on natural bacterial aquatic populations. Antibiotic resistance of heterotrophic bacteria isolated from the surface microlayer and subsurface water of freshwater coastal polymictic and low-productive lake was studied. Antibiotic resistance was determined by the single disc diffusion method. The resistance level of bacteria to various antibiotics differed considerably. Bacteria were most resistant to ampicillin, ciprofloxacin, clindamycin, erythromycin and penicillin. Majority of bacterial strains showed resistance to 4.6 out of 18 antibiotics tested. As a rule, neustonic bacteria (antibiotic resistance index, ARI 0.44) were more resistant to the studied antibiotics than planktonic bacteria (ARI 0.32). 70-90% of neustonic bacteria were resistant to ampicillin, clindamycin and erythromycin, 60-70% of planktonic bacteria were resistant to ampicillin, ciprofloxacin and penicillin. Differences between pigmented and non-pigmented bacteria in their resistance to the tested antibiotics were observed. Above 40% of achromogenic bacterial strains were resistant to ampicillin, clindamycin and penicillin. Among bacterial strains characterised by their ability to synthesize carotenoids, more than 30% was resistant to ampicillin and ciprofloxacin. Bacterial resistance level to antibiotics depended on their chemical structure. Bacteria isolated from study lake were most resistant to quinolones and lincosamides while they were most susceptible to tetracyclines and aminoglycosides. Results presented in this paper indicate that antibiotics are a significant selection factor and probably play an important role in regulating the composition of bacterial communities in aquatic ecosystems. Adaptive responses of bacterial communities to several antibiotics observed in the present study may have possible implications for the public health.
Opis fizyczny
Bibliogr. 48 poz.,Rys., tab.,
  • Department of Experimental Biology, Pomeranian Pedagogical University, Arciszewskiego 22B, 76-200 Słupsk, Poland,
  • 1. Akinbowale O.L., Peng H., Barton M.D. 2006 – Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia J. Appl. Microb. 100: 1103–1113.
  • 2. Alpay-Karaoglu S., Ozgumus O.B., Sevim E., Kolayli F., Sevim A., Yesilgil P. 2007 – Investigation of antibiotic resistance profile and TEM-type β-lactamase gene carriage of ampicillin-resistant Escherichia coli strains isolates from drinking water – Ann. Microb. 57: 281–288.
  • 3. Andreozzi R., Carerino M., Lo Giudice R., Marotta R., Pinto G., Pollio A. 2006 – Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation – Wat. Res. 40: 630–638.
  • 4. Arvanitidou M., Tsakris A., Constantindis T.C., Katsouyannopulus V.C. 1997 Transferable antibiotic resistance among Salmonella strains isolated from surface water – Wat. Res. 37: 1112–1116.
  • 5. Baya A.M., Brayton P.R., Brown V.L., Grime D.J., Russek-Choen E., Colwell R.R. 1986 – Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples – App. and Environ. Microb. 51: 1285–1292.
  • 6. Brown D.K., Kulis J., Thomson B., Chapman T.H., Mawhinney D.B. 2006 – Occurrence of antibiotics in hospital, residential and dairy effluent municipal wastewater and the Rio Grande in New Mexico – Scien. Total Environ. 366: 772–783.
  • 7. Calamari D., Zuccato E., Castiglioni S., Bagnati R., Fanelli R. 2003 – Strategic survay of therapeutic drugs in the Rives Po and Lambro in Northern Italy – Environ. Sci. and Technol. 37: 1241–1248.
  • 8. Chelossi E.Ch., Vezzulli L., Milano A., Branzoni M., Fabiano M., Riccardi G., Banat I.M. 2003 – Antibiotic resistance of benthic bacteria in fish-farm and control sediments of the West. Mediterranean – Aquaculture, 219: 83–97.
  • 9. Chopra I., Roberts M. 2001 – Tetracycline antibiotics mode action, applications, molecular biology and epidemiology of bacterial resistance Microb. and Molecul. Biol. Rev. 65: 232–260.
  • 10. Costanzo S.D., Murby J., Bates J. 2005 – Ecosystem response to antibiotic entering the aquatic environment – Mar. Pollut. Bull. 51: 218–223.
  • 11. De Souza M.J., Nair P.A., Bharathi L., Chandramohan D. 2006 – Metal and antibiotic resistance in psychrotrophic bacteria from Antarctic marine water – Ecotoxicology, 15: 379–384.
  • 12. Davies J., Smith D.J. 1978 – Plasmid determined resistance to antimicrobial agents – Ann. Rev. Microb. 32: 469–518.
  • 13. Drlica K. 1999 – Mechanism of fluoroquinolone action – Curr. Op. in Microb. 2: 504–508.
  • 14. Dougherty T.J., Beaulieu D., Barett J.F. 2001 – New quinolones and the impact on resistance – DDT, 6: 529–536.
  • 15. Goldstein F.W., Acer J.F. 1995 – Epidemiology of quinolone resistance: Europe and North and South America – Drugs, 49: 36–42.
  • 16. Garrett W.D. 1965 – Collection of slick-forming materials from the sea surface – Limnol. and Oceanog. 10: 602–605.
  • 17. Hale M.S., Mitchell J.G. 1997 – Sea surface microlayer and bacterioneuston spreading dynamics – Mar. Ecol. Prog. Ser. 147: 269– 276.
  • 18. Hermansson M., Jones G.W., Kjelleberg S. 1987 – Frequency of antibiotic and heavy metal resistance, pigmentation and plasmids in bacteria of the marine air-water interface – Appl. and Environ. Microb. 53: 2338–2342.
  • 19. Herwig R.P., Gray J.P., Weston D.P. 1997 Antibacterial resistant bacteria in surficial sediments near salmon net-cage farms in Puget Sound, Washington – Aquaculture, 149: 263–283.
  • 20. Hsu C.H., Hwang S.C., Liu J.K. 1992 – Succession of bacterial drug resistance as an indicator of antibiotic application in aquaculture – J. Fish. Soc. Taiwan, 19: 55–64.
  • 21. Jones J.G., Gardner S., Simon B.M., Pickup R.W. 1986 – Factors affecting the measurement of antibiotic resistance in bacteria isolated from lake water – J. Appl. Bacter. 60: 455–462.
  • 22. Jones B., Baines L., Gauthier F. 1991 – Heterotrophic bacteria of the freshwater neuston and their ability to act as plasmid recipients under nutrient deprived conditions – FEMS Microb. Ecol. 22: 15–25.
  • 23. Kapusta A., Bogacka E. 2003 – Characteristics of the structure of ichthyofauna assemblages in the littoral of the lobelia-lake Dolgie Wielkie and analysis of fisheries catches – Arch. Pol. Fish. 11: 265–275.
  • 24. Le T.X., Munekage Y. 2004 – Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Vietnam Mar. Pollut. Bull. 49: 922–929.
  • 25. Li X.Z. 2005 – Quinolone resistance in bacteria: emphasis on plasmid-mediated mechanisms – Int. J. Antimicrob. Agents, 25: 453–463.
  • 26. Lobova T. I., Maksimova E.Y., Popova Y., Pechurkin N.S. 2002 – Geographical and seasonal distribution of multiple antibiotic resistance of heterotrophic bacteria of Lake Shira – Aquatic Ecol. 3: 299–307.
  • 27. Lüthje P., Schwarz S. 2007 – Molecular basis of resistance to macrolides and lincosamides among staphylococcus and streptococci from various animal sources collected in the resistance monitoring program BfT-GermanVet – Antimicrob. Agents, 29: 528–535.
  • 28. Maki J.S., Hermansson M. 1994 – The dynamics of surface microlayers in aquatic environments (In: The Biology of Particles in Aquatic Systems, Ed. R.S. Watten) – Publishers Boca Rotan Ann Arbor, London, Tokyo pp. 161–182.
  • 29. Meirelles-Pereira F., Santos-Pereira A.M., Gomes de Silva MC., Gonealves V.D., Brum P.B., De Castro A., Pereira A.A., Esteves Pereira J.A.A. 2002 – Ecological aspects of the antimicrobial resistance in bacteria of importance to human infection Braz. J. Microb. 33: 287–293.
  • 30. Messi P., Guerreri E., Bondi M. 2005 – Antibiotic resistance and antimicrobial activity in heterotrophic bacteria of mineral water origin Sci. Tot. Environ. 346: 213–219.
  • 31. Miranda D.C., Zemelman R. 2002 – Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms – Sci. Tot. Environ. 293: 207–218.
  • 32. Miranda D.C., Kehrenberg C., Ulep C., Schwarz S., Roberts M.C. 2003 – Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms – Antimicrob. Agents and Chemotherapy, 47: 883–888.
  • 33. Mudryk Z. 2002 – Antibiotic resistance among bacteria inhabiting surface and subsurface water layers in estuarine lake Gardno – Pol. J. Environ. Stud. 11: 401–406.
  • 34. Mudryk Z. 2005 – Occurrence and distribution antibiotic resistance of heterotrophic bacteria isolated from a marine beach – Mar. Pollut Bull. 50: 80–86.
  • 35. Mudryk Z., Skórczewski P. 1998 – Antibiotic resistance in marine neustonic and planktonic bacteria isolated from the Gdańsk Deep – Oceanologia, 40: 125–136
  • 36. Mudryk Z., Trojanowski J., Skórczewski P., Antonowicz J. 2003 – Chemical and bacteriological studies of surface and subsurface water layers in estuarine Lake Gradno –Pol. J. Environ. Stud. 12: 199–206.
  • 37. Műnster U., Heikkinen E., Knulst J. 1998 – Nutrient composition, microbial biomass and activity at the air-water interface of small boreal forest lakes – Hydrobiol. 363: 261–270.
  • 38. Nair S., Chandramohan D., Bharathi L. 1992 – Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics – Wat. Res. 26: 431–434.
  • 39. O’Dowd H., Lewis J.G., Trias J., Asano R., Blais J., Lopes S.L., Park C.K., Wu Ch., Wand W., Gordev M.F. 2008 – Novel antibacterial azetidine linocosamides – Bioorganic & Med. Chem. Let. 18: 2645–2648.
  • 40. Qureshi A.A., Qureshi M.A. 1992 – Multiple antibiotic resistant fecal coliforms in raw sewage – Wat. Air & Soil Pollut. 61: 47–56.
  • 41. Pathak S.P., Gopal K. 2005 – Occurrence of antibiotic and metal resistance in bacteria from organs of river fish – Environ. Res. 98: 100–103.
  • 42. Plusquellec A., Beucher H., Lelay C., Legal Y., Cleret J. 1991 – Quantitative and qualitative bacteriology of the marine water surface microlayer in sewage polluted area – Mar. Environ. Res. 31: 227–239.
  • 43. Reinthaler F.F., Posch J., Feierl G. Wüst G., Haas D., Ruckenbauer G., Maschar F., Marth E. 2003 – Antibiotic resistance of E.coli in swage and sludge – Wat. Res. 37: 1685–1690.
  • 44. Shannon K., Philips I. 1982 – Mechanisms of resistance to aminoglicosides in clinical isolates – J. Antimicrob. Chemotherapy, 9: 91–102.
  • 45. Tamtam F., Mercier F., Le Bot B., Eurin J., Dinh T.Q., Clement M., Chevreuil M. 2008 – Occurrence and fate antibiotics in the Seine River in various hydrological conditions –Sci. Tot. Environ. 84–95.
  • 46. Trojanowski J., Trojanowska Cz., Antonowicz J. 2001 – Nitrogen and phosphorus in surface microlayers of estuarine, shallow lake (north Poland) – Ecohydrology & Hydrobiology, 1: 457–463.
  • 47. Walczak M., Donderski W. 2004 – Antibiotic sensitivity of neustonic bacteria in lake Jeziorak Mały – Pol. J. Environ. Stud. 13: 429–434.
  • 48. Williams P.A. 1982 – Genetic interactions between mixed microbial populations – Philosophical Transaction of the Royal Society of London. Series B, 297: 631–639.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.