PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detrital components in submontane organogenic springs in relation to their morphology, microhabitats and macroinvertebrates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fine particulate organic matter (FPOM), originated by aggregation of smaller particles and by decomposition of bigger particles, usually presents the dominant energy and nutrient source in the primary river net. Relationships between detrital components, environmental factors and macroinvertebrate composition were investigated in 52 submontane organogenic spring areas in small catchment in the Sumava foothills, Czech Republic. All three types of springs (helocrenes, rheocrenes and limnocrenes) were represented, as well as springs with the transitional character. The selected springs were permanent, with water discharge higher than 0.1 L s[^-1], they all were coldwater and stenothermic, with the winter water temperature at the point of the source ranging from 2.0 to 9.9[degrees]C. At each spring area, the main morphological and physical characteristics of the spring and surrounding area were recorded. Samples of detritus were collected (using the 2 mL sampling tube) from up to 5 microhabitats at each spring, usually macrophyte vegetation, point of the source, detrital deposition, sand, algal mat, leaf litter or moss, accordingly to the microhabitats, which were present. Macroinvertebrates were semiquantitatively sampled using a 15-cm circular sampler with 0.8 mm mesh, to the orders or lower taxa were determined. Water samples were taken, and analyses of the main physico-chemical factors were carried out. In our set of springs, organic substrate prevailed. Only small differences in the physico-chemical parameters (e.g. pH = 5.96 [plus or minus] 0.39; mean [plus or minus] SD) and low concentrations of nutrients (e.g. N-NO3[^-] = 0.79 [plus or minus] 0.86 mg L[^-1], ortho-PPO4[^-] = 0.0336 [plus or minus] 0.0275 mg L[^-1]) were noted, whereas studied geomorphological parameters and microhabitat types were more diverse. The proportion of basic microscopically differentiable components of the detritus was similar in all spring types and microhabitats. In all study sites, faecal pellet content was dominant in the detritus (49%) followed by plant residuals (26%) and amorphous matter (21%). High faecal pellet content is considered to be a consequence of a steadily low temperature in the springs. The correlation among the presence of macroinvertebrate groups and particular detrital components content was not significant, except for Trichoptera; the abundance of this group was positively correlated with the proportion of plant residuals in detritus in vegetation microhabitats. Faecal pellet content showed a weak negative correlation with N-NH4 concentration, which is probably the result of faster faecal pellet decomposition in springs with higher N-NH4 contents.
Rocznik
Strony
163--175
Opis fizyczny
Bibliogr. 51 poz.,Rys., tab.,
Twórcy
autor
autor
autor
autor
  • T.G.M. Water Research Institute, Podbabska 2582/30, CZ-16062 Praha 6, Czech Republic ; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic, kamila_fricova@vuv.cz
Bibliografia
  • 1. Anderson N.H., Sedell J.R. 1979 – Detritus processing by macroinvertebrates in stream ecosystems – Annu. Rev. Entomol. 24: 351–377.
  • 2. Baker M.A., Valett H.M., Dahm C.N. 2000 – Organic carbon supply and metabolism in a shallow groundwater ecosystem – Ecology, 81: 3133–3148.
  • 3. Barquín J., Death R.G. 2009 – Physical and chemical differences in karst springs of Cantabria, northern Spain: Do invertebrate communities correspond? – Aquat. Ecol. 43: 445–455.
  • 4. Bogenrieder A., Eschenbach C. 1996 – Öklogische Untersuchungen an Moosen aus Quellfluren kalt-stenothermer Quellen des Hochschwarzwaldes [Ecological research on mosses from spring areas of cold-stenotherm springs in Hochschwarzwald] – Cruonecia, 5: 109–118 (in German).
  • 5. Brown L.E., Milner A.M., Hannah D.M. 2007 – Groundwater influence on alpine stream ecosystems – Freshwater Biol. 52: 878–890.
  • 6. Chafiq M., Gibert J. 1996 – Relationships between solutes, nutrients, and the biofilm in sediments of floodplain karstic and alluvial springs – Int. Rev. Hydrobiol. 81: 399–416.
  • 7. Chytrý M., Kučera T., Kočí N. 2001 – Katalog biotopů České republiky [The biotope catalog of Czech Republic] – Agency for Nature Conservation and Landscape Protection of the Czech Republic, Prague, 304 pp. (in Czech).
  • 8. Collier K.J, Smith B.J. 2006 – Distinctive invertebrate assemblages in rockface seepages enhance lotic biodiversity in northern New Zealand – Biodivers. Conserv. 15: 3591–3616.
  • 9. Dort B., Hruška J. 2007 – Speciální revitalizační studie Blanice a Zlatého potoka. Praha [A special revitalization study of Blanice and Zlaty potok] – Agency for Nature Conservation and Landscape Protection of the Czech Republic, Prague, Report, 230 pp. (in Czech).
  • 10. Dudák V. 2003 – Šumava - příroda, historie, život [Šumava - nature, history, life] – Baset, Prague, 800 pp. (in Czech).
  • 11. Dumnicka E., Galas J., Koperski J. 2007 - Benthic invertebrates in karst springs: Does substratum or location define communities? – Int. Rev. Hydrobiol. 92: 452–464.
  • 12. Erman N.A., Erman D.C. 1995 – Spring permanence, Trichoptera species richness, and the role of drought – J. Kansas Entomol. Soc. 68: 50–64.
  • 13. Füreder L., Welter C., Jackson J.K. 2003 - Dietary and stable isotope (δ 13C, δ 15N) analyses in alpine stream insects – Int. Rev. Hydrobiol. 88: 314–331.
  • 14. Gerecke R., Sabatino A. 1996 – Water mites (Acari, Hydrachnellae) and spring typology in Sicily – Crunoecia, 5: 35–41.
  • 15. Glazier D.S. 1991 – The fauna of North-American temperate cold springs - patterns and hypotheses – Freshwater Biol. 26: 527–542.
  • 16. Gooch J.L., Glazier D.S. 1991 – Temporal and spatial patterns in mid-Appalachian springs – Mem. Entomol. Soc. Can. 155: 29–49.
  • 17. Gounot A.M. 1991 – Microbial ecology of groundwater and sediments – Hydrogeologie, 3: 239–248.
  • 18. Hadač E. 1983 – A survey of plant communities of springs and mountain brooks in Czechoslovakia – Folia Geobot. Phytotaxon. 18: 339–361.
  • 19. Hahn H.J. 2000 – Studies on Classifying of Undisturbed Springs in Southwestern Germany by Macrobenthic Communities – Limnologica, 30: 247–259.
  • 20. Hájek M., Hekera P. 2004 – Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses? – Preslia, 76: 1–14.
  • 21. Hall J., Wallace J.B., Eggert S.L. 2000 – Organic matter flow in stream food webs with reduced detrital resource base – Ecology, 81: 3445–3463.
  • 22. Hoffsten P., Malmqvist B. 2000 – The macroinvertebrate fauna and hydrogeology of springs in central Sweden – Hydrobiologia, 436: 91–104.
  • 23. Ilmonen J., Paasivirta L. 2005 – Benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics: patterns in abundance and diversity – Hydrobiologia, 533: 99–113.
  • 24. Ilmonen J., Paasivirta L., Virtanen R., Muotka T. 2009 – Regional and local drivers of macroinvertebrate assemblages in boreal springs – J. Biogeogr. 36: 822–834.
  • 25. Iversen T.M., Jensen T., Skriver J. 1982 - Inputs and transformation of allochthonous particulate organic matter in a headwater stream – Holarctic Ecol. 5: 10–19.
  • 26. Joyce P., Warren L.L., Wotton R.S. 2007 - Faecal pellets in streams: Their binding, breakdown and utilization – Freshwater Biol. 52: 1868–1880.
  • 27. Joyce P., Wotton R.S. 2008 – Shredder fecal pellets as stores of allochthonous organic matter in streams – J. N. Am. Benthol. Soc. 27: 521–528.
  • 28. Lindegaard C., Brodersen K.P., Wiberg-Larsen P., Skriver J. 1998 – Multivariate analyses of macrofaunal communities in Danish springs and springbrooks (In: Studies in Crenobiology, Ed. L. Botosaneanu) – Backhuys Publishers, Leiden: 201–220.
  • 29. Lindegaard C., Thorup J., Bahn M. 1975 - Invertebrate fauna of moss carpet in Danish spring Ravnkilde and its seasonal, vertical and horizontal distribution – Arch. Hydrobiol. 75: 109–139.
  • 30. Lush D.L., Hynes H.B.N. 1973 – The formation of particles in freshwater leachates of dead leaves – Limnol. Oceanogr. 18: 968–977.
  • 31. McCabe D.J. 1998 – Biological communities in springbrooks (In: Studies in Crenobiology, Ed. L. Botosaneanu) – Backhuys Publishers, Leiden: 221–228.
  • 32. Menninger H.L., Palmer M.A. 2007 – Herbs and grasses as an allochthonous resource in open-canopy headwater streams – Freshwater Biol. 52: 1689–1699.
  • 33. Mezquita M., Tapia G., Roca J.R. 1999 – Ostracoda from springs on the eastern Iberian Peninsula: ecology, biogeography and palaeolimnological implications – Palaeogeogr., Palaeoclimateol., Palaeoecol. 148: 65–85.
  • 34. Moore J.C., Berlow E.L., Coleman D.C., De Ruiter P.C., Dong Q., Hastings A., Collins N., McCann K.S., Melville K., Morin P.J., Nadelhoffer K., Rosemond A.D., Post D.M., Sabo J.L., Scow K.M., Vanni M.J., Wall D.H. 2004 – Detritus, trophic dynamics and biodiversity – Ecology Letters, 7: 584–600.
  • 35. Müller V. 2002 – Vysvětlivky k souboru geologických a ekologických účelových map přírodních zdrojů v měřítku 1:50 000, list 32-12 Volary [Glossary to the geological and ecological purpose maps of natural resources, sheet 32-12 Volary] – Czech Geological Survey, Prague (in Czech).
  • 36. Nesterovich A. 1996 – Studies of the fauna of Belarusian springs – Crunoecia, 5: 79–85.
  • 37. Nilsson A. 1997 – Aquatic Insects of North Europe, A Taxonomic Handbook – Apollo Books, Stenstrup, 440 pp.
  • 38. Richardson J.S., Danehy R.J. 2007 – A synthesis of the ecology of headwater streams and their riparian zones in temperate forests – For. Sci. 53: 131–147.
  • 39. Rozkošný R. 1980 – Klíč vodních larev hmyzu [The key to insects aquatic larvae] – Academia, Praha, 521 pp. (in Czech).
  • 40. Schmera D., Erös T., Greenwood M.T. 2007 – Spatial organization of a shredder guild of caddisflies (Trichoptera) in a riffle - Searching for the effect of competition – Limnologica, 37: 129–136.
  • 41. Short R.A., Ward J.V. 1981 – Benthic detritus dynamics in a mountain stream – Ecography, 4: 32–35.
  • 42. Simon K.S., Benfield E.F., Macko S.A. 2003 – Food web structure and the role of epilithic biofilms in cave streams – Ecology, 84: 2395–2406.
  • 43. Staudacher K., Füreder L. 2007 – Habitat complexity and invertebrates in selected alpine springs (Schütt, Carinthia, Austria) – Int. Rev. Hydrobiol. 92: 465–479.
  • 44. Thienemann A. 1924 – Hydrobiologische Untersuchungen an Quellen [Hydrobiological survey of springs] – Arch. Hydrobiol. 14: 151–190.
  • 45. Van Everdingen R.O. 1991 – Physical, chemical, and distributional aspects of Canadian springs – Mem. Entomol. Soc. Can. 155: 7–28.
  • 46. Von Fumetti S., Nagel P., Baltes B. 2007 - Where a springhead becomes a springbrook - A regional zonation of springs – Fund. Appl. Limnol. 169: 37–48.
  • 47. Wallace J.B., Cuffney T.F., Webster J.R., Lugthart G.J., Chung K., Goldowitz B.S. 1991 – Export of fine organic particles from headwater streams: effects of season, extreme discharges, and invertebrate manipulation – Limnol. Oceanogr. 36: 670–682.
  • 48. Wallace J.B., Eggert S.L., Meyer J.L., Webster J.R. 1997 – Multiple trophic levels of a forest stream linked to terrestrial litter inputs – Science, 277: 102–104.
  • 49. Wotton R.S. 2007 – Do benthic biologists pay enough attention to aggregates formed in the water column of streams and rivers? – J. N. Am. Benthol. Soc. 26: 1–11.
  • 50. Zimmermann–Timm H. 2002 – Characteristics, dynamics and importance of aggregates in rivers - An invited review – Int. Rev. Hydrobiol. 87: 197–240.
  • 51. Zollhöfer J.M., Brunke M., Gonser T. 2000 – A typology of springs in Switzerland by integrating habitat variables and fauna – Arch. Hydrobiol. 121: 349–376.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3624-3931
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.