PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Black box : what do we know about Humic lakes?

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The classic description of a coloured lake implies low productivity (Nauman 1921; cited in Jones 1922). Wetzel (1975) initially classified dystrophic lakes as oligotrophic, but later stated that dystrophy represents a subset of trophic continuum, from oligotrophy to eutrophy, rather than a parallel concept (Wetzel 2001). Other more recent studies have demonstrated that many dystrophic lakes are mesotrophic or even eutrophic (Jones 1992, Keskitalo and Eloranta 1999). Furthermore, the pH of their water can range between 4.1 and 8.0 (Keskitalo and Eloranta 1999), and it is clear that this property should be treated as an additional factor affecting their trophic state. Our own findings from humic acidic lakes of different trophic states and from one posthumic lake (originally humic, now eutrophic with pH = 7), together with data from the literature describing about 40 brown-water lakes, can be used to verify general statements concerning microbial ecology paradigms for humic waters: 1) the bacterial to phytoplankton biomass ratio is generally high and increases with lake water colour; 2) there is a positive relationship between bacterial biomass and the concentration of organic matter expressed in dissolved organic carbon units and as water colour; 3) bacterial production is generally higher than primary production; 4) there is a good correlation between bacterial production and humic matter content; 5) the pH of the water/sediments can modify these relationships by accelerating the rates between the variables mentioned above in neutral pH and/or limiting them in low pH. In this review we show that these statements are not always confirmed by detailed analyses of the available data, suggesting that in addition to the concentration of humic matter, the lake productivity, expressed as chlorophyll a and primary production, also influences the ratios between the compared variables. We also demonstrate that despite being weaker, the relationships between phytoplankton-related variables and bacterial abundance and production in low pH lakes are similar to those in circum-neutral humic waters. In addition, we show that the conversion factors and the proportion of active bacterial cells greatly influence all of the aforementioned relationships.
Rocznik
Strony
647--664
Opis fizyczny
Bibliogr. 74 poz.,Rys., tab.,
Twórcy
autor
  • Polish Academy of Sciences, Centre for Ecological Research, Dziekanów Leśny, Konopnickiej 1, 05-092 Łomianki, Poland, iwona.ks@cbe-pan.pl
Bibliografia
  • 1. Amblard C., Carrias J-F., Bourdier G., Maurin N. 1995 – the microbial loop in humic lake: seasonal and vertical variations in the structure of the different communities – Hydrobiologia, 300/301: 71–84.
  • 2. Arvola L., Kankaala P., Tulonen T., Ojala A. 1996 – Effects of phosphorus and allochthonous humic matter enrichment on the metabolic processes and community structure of plankton in a boreal lake (Lake Pääjärvi) – Can. J. Fish Aqaut. Sci. 53: 1646–1662.
  • 3. Arvola L., Metsälä T.-R., Similä A., Rask M. 1990 – Phyto- and zooplankton in relation to water pH and humic content in small lakes in southern Finland – Verh. Int. Ver. Limnol. 24: 688–692.
  • 4. Arvola L., Tulonen T. 1998 – Effects of allochthonous dissolved organic matter and inorganic nutrients on the growth of bacteria and algae from a highly humic lake – Environment International, 24: 509–520.
  • 5. Bell R.T. 1990 – An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of [3H]thymidine – Limnol. Oceanogr. 35: 910–915.
  • 6. Bell R.T., Ahlgren G.M., Ahlgren I. 1983 – Estimating bacterioplankton production by measuring [3H]thymidine incorporation in a eutrophic Swedish Lake – Appl. Environ. Microbiol. 45: 1709–1721.
  • 7. Bell R.T., Vrede K., Stensdotter-Blomberg U., Blomqvist P. 1993 – Stimulation of the microbial food web in an oligotrophic, slightly acidified lake – Limnol. Oceanogr. 38: 1532–1538.
  • 8. Bergström A-K., Jansson M. 2000 – Bacterioplankton production in humic Lake Örträsket in relation to input of bacterial cells and input of allochthonous organic carbon – Microb. Ecol. 39: 101–115.
  • 9. Bergström A-K., Jansson M., Drakare S., Blomqvist P. 2003 – Occurrence of mixotrophic flagellates in relation to bacterioplankton production, light regime and availability of inorganic nutrients in unproductive lakes with differing humic contents – Freshwater Biology, 48: 868–877.
  • 10. Bjørnsen P.K. 1986 – Automatic determination of bacterioplankton biomass by image analysis – App. Environ. Microbiol. 51: 1199–1204.
  • 11. Blouin A.C. 1989 – Patterns of plankton species, pH and associated water chemistry in Nova Scotia lakes – Water, Air, and Soil Pollution, 46: 343–358.
  • 12. Boulion V.V., Håkanson L. 2003 – A new general dynamic model to predict biomass and production of bacterioplankton in lakes – Ecological Modelling, 160: 91–114.
  • 13. Bratbak G. 1985 – Bacterial biovolume and biomass estimations – Appl. Environ. Microbiol. 49: 1488–1493.
  • 14. Chróst R.J., Adamczewski T., Kalinowska K., Skowrońska A. 2009 – Inorganic phosphorus and nitrogen modify composition and diversity of microbial communities in water of a mesotrophic lake – Pol. J. Microbiol. 58: 77–90.
  • 15. Chróst R.J., Koton M., Siuda W. 2000 – Bacterial secondary production and bacterial biomass in four Mazurian Lakes of differing trophic status – Pol. J. Environ. st. 9: 255–266.
  • 16. Chróst R.J., Overbeck J., Wcisło R. 1988 – Evaluation of the [3H] Thymidyne method for estimating bacterial growth rates and production in lake water: re-examination and methodological comments – Acta Microbiol. Polonica. 37: 95–112.
  • 17. Daniel C., Gutseit K., Anesio M., Granéli W. 2005 – Microbial food webs in the dark: independence of lake plankton from recent algal production – Aquat. Microb. Ecol. 38: 113–123.
  • 18. del Giorgio P.A., Scarborough G. 1995 – Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: implications for estimates of bacterial growth and production rates – J. Plankton Res. 1: 1905–1924.
  • 19. Derry A.M., Arnott S.E. 2007 – Zooplankton community response to experimental acidification in boreal shield lakes with different ecological histories – Can. J. Fish. Aquat. Sci. 64: 887–898.
  • 20. Drakare S., Blomqvist P., Bergström A-K., Jansson M. 2002 – Primary production and phytoplankton composition in relation to DOC input and bacterioplankton production in humic Lake Örträsket – Freshwater Biology, 47: 41–52.
  • 21. Drakare S., Blomqvist P., Bergström A-K., Jansson M. 2003 – Relationship between picophytoplankton and environmental variables in lakes along a gradient of water colour and nutrient content – Freshwater Biology, 48: 729–740.
  • 22. Farjalla V.F., Faria B.M., Esteves F.A. 2002 – The relationship between DOC and planktonic bacteria in tropical coastal lagoons – Arch. Hydrobiol. 156: 97–119.
  • 23. Farjalla V.F., Amado A.M., Suhett A.L., Meirelles-Pereira F. 2009 – DOC removal paradigms in highly humic aquatic ecosystems – Environ. Sci. Pollut. Res. 16: 531–538.
  • 24. Fuhrman J.A., Azam F. 1982 – Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results – Marine Biology, 66: 109–120
  • 25. Haukka K., Heikkinen E., Kairesalo T., Kajraleinen K., Sivonen K. 2005 – Effect on humic material on the bacterioplankton community composition in boreal lakes and mesocosms – Environ. Microbiol. 7: 620–630.
  • 26. Hessen D.O. 1992 – Dissolved organic carbon in a humic lake: effects on bacterial produc tion and respiration – Hydrobiologia, 229: 115–123.
  • 27. Hessen D.O., Andersen T., Lyche A. 1990 – Carbon metabolism in a humic lake: Pool sizes and cycling trough zooplankton – Limnol. Oceanogr. 34: 84–99.
  • 28. Hessen D.O., Nygaard K., Salonen K., Vahatalo A. 1994 – The effect of substrate stoichiometry on microbial activity and carbon degradation in humic lakes – Environ. Int. 20:67–76.
  • 29. Ivanova M.B., Kazantseva T.I. 2006 – Effect of water pH and total dissolved solids on the species diversity of pelagic zooplankton in lakes: A statistical analysis – Russian J. Ecol. 37: 264–270.
  • 30. Jansson M., Bergström A-K., Blomqvist P., Drakare S., 2000 – Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes – Ecology, 81: 3250–3555.
  • 31. Jansson M., Bergström A-K., Blomqvist P., Isaksson A., Jonsson A. 1999 – Impact of allochthonous organic carbon on microbial food web carbon dynamics and structure in Lake Örträsket – Arch. Hydrobiol. 144: 409–428.
  • 32. Jansson M., Bergström A-K., Drakare S., Blomqvist P. 2001 – Nutrient limitation of bacterioplankton and phytoplankton in humic lakes in northern Sweden – Freshwater Biology, 46: 653–666
  • 33. Jansson M., Blomqvist P., Jonsson A., Bergström A-K. 1996 – Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket – Limnol. Oceanogr. 41: 1552–1559
  • 34. Jasser I., Kostrzewska-Szlakowska I., Ejsmont-Karabin J., Kalinowska K., Węgleńska T. 2009 – Autotrophic versus heterotrophic production and components of trophic chain in humic lakes: the role of microbial communities – Pol. J. Ecol. 57: 423–439.
  • 35. Johansson J-Å. 1983 – seasonal development of bacterioplankton in two forest lakes in central sweden – Hydrobiologia, 101: 71-88.
  • 36. Jones R.I. 1992 – The influence of humic substances on lacustrine planktonic food chain – Hydrobiologia, 229: 73–91.
  • 37. Jonsson A., Meili M., Bergström A.-K., Jansson M. 2001 – Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Őrträsket, N. Sweden) – Limnol. Oceanogr. 46: 1691–1700.
  • 38. Jurgens G., Glöckner F.-O., Amann R., Saano A., Montonen L., Likolammi M., Münster U. 2000 – Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization – FEMS Microbiology Ecology, 34: 45–56.
  • 39. Kalinowska K. 2004 – Bacteria, nanoflagellates and ciliates as components of the microbial loop in three lakes of different trophic status – Pol. J. ecol. 52: 19–34
  • 40. Kankaala P. 1988 – The relative importance of algae and bacteria as food for Daphinia longispina Icladocera) in a polyhumic lake – Freshwater Biology, 19: 285–296.
  • 41. Kankaala P., Arvola L., Tulonen T., Ojala A. 1996 – Carbon budget for the pelagic food web of the euphotic zone in a boreal lake (Lake Pääjärvi) – Can. J. Fish. Aquat. Sci. 53: 1663–1674.
  • 42. Karlsson J., Jansson M., Jonsson A. 2002 – Similar relationships between pelagic primary and bacterial production in clearwater and humic lakes – Ecology, 83: 2902–2910.
  • 43. Karlsson J., Jonsson A., Meili M., Jansson M. 2003 – Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden – Limnol. Oceanogr. 48: 269–276
  • 44. Kemp P.F., Sherr B.F., Sherr E.B., Cole J.J. 2000 – Aquatic microbial ecology. Handbook of methods – Lewis Publishers, Boca Raton, Ann Arbor, Londom, Tokyo. 777 pp.
  • 45. Keskitalo J., Eloranta P. 1999 – Limnology of humic waters – Backhuys Publishers, Leiden, 284 pp.
  • 46. Kristiansen S., Syvertsen E.E., Farbrot T. 1992 – Nitrogen uptake in the Weddell Sea during late winter and spring – Polar Biol. 12: 245–251.
  • 47. Lee S., Fuhrman A. 1987 – Relationships between biovolume and biomass of naturally derived marine bacterioplankton – Appl. Environ. Microbiol. 53: 1298–1303.
  • 48. Lindell M.J., Graneli W., Tranvik L.J. 1995 – Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter – Limnol. Oceanogr. 40: 195–199
  • 49. Linström E.S. 2000 – Bacterioplankton community composition in five lakes differing in trophic status and humic content – Microb. Ecol. 40: 104–113.
  • 50. Locke A., Sprules W.G. 2000 – Effects of acidic pH and phytoplankton on survival and condition of Bosmina longirostris and Daphnia pulex – Hydrobiologia, 437: 187–196.
  • 51. Lyautey E., Boulêtreau S., Madigou E.Y., Garabetian F. 2010 – Viability of differentiated epilithic bacteria communities in the river Garonne (sw France) – Hydrobiologia, 637: 207–218.
  • 52. Münster U., Heillinen E., Knulst J. 1998 – Nutrient composition, microbial biomass and activity at the air-water interface of small boreal forest lakes – Hydrobiologia, 363: 261–270.
  • 53. Münster U., Nurminen J., Einiö P., Overbeck J. 1992 – Extracellular enzymes in a small polyhumic lake: origin, distribution and activities – Hydrobiologia, 243/244: 47–59.
  • 54. Nürnberg G.K., Shaw M. 1999 – Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria – Hydrobiologia, 382: 97–112
  • 55. Petit M., Servais P., Lavandier P. 1999 – Bacterial production measured by leucine and thymidine incorporation rates in French Lakes – Freshwater Biology, 42: 513–524.
  • 56. Reynolds C.S. 2006 – The ecology of phytoplankton – Cambridge University Press, 535 pp.
  • 57. Salonen K. 1981 – The ecosystem of the oligotrophic lake Pääjärvi. 2. Bacterioplankton. – Verh. Int. Verein. Limnol. 21: 448–553.
  • 58. Salonen K., Jones R., de Haan H., James N. 1994 – Radiotracer study of phosphorus uptake by plankton and redistribution in the water column in a small humic lakes – Limnol. Oceanogr. 39: 69–83.
  • 59. Salonen K., Kankaala P., Tulonen T., Hammar T., James M., Metsälä T-R., Arvola L. 1992 – Planktonic food chains of a highly humic lake. II. A mesocosm experiment in summer during dominance of heterotrophic processes – Hydrobiologia, 229: 143–157.
  • 60. Schumann R., Schiewer U., Karsten U., Rieling T. 2003 – Viability of bacteria from different aquatic habitats. II Cellular fluorescent markers for membrane integrity and metabolic activity – Aquat. Microb. Ecol. 32: 137–150.
  • 61. Simon M., Azam F. 1989 – Protein content and protein synthesis rates of planktonic marine bacteria – Mar. Ecol. Prog. Ser. 51: 201–213.
  • 62. Siuda W., Chróst R.J. 2002 – Utilization of selected organic phosphorus by bacteria in lake water under non-limiting orthophosphate conditions – Pol. J. Environ. st. 10: 475–483.
  • 63. Smith J.D., Riemann B. 1988 – Calculation of cell production from [3H] Thymidine incorporation with freshwater bacteria – Appl. Environ. Microbiol. 54: 2213–2219.
  • 64. Sorokin Yu.I., Kadota H. 1972 – On the characteristics of microbial production in freshwaters – IBP Handbook 23, Blackwell, London, pp. 1–112.
  • 65. Theil-Nielsen J., Søndergaard M. 1998 – Bacterial carbon biomass calculated from biovolumes – Arch. Hydrobiol. 141: 195–207.
  • 66. Tranvik L.J. 1988 – Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content – Microb. Ecol. 16: 311–322.
  • 67. Tranvik L.J. 1989 – Bacterioplankton growth, grazing mortality and quantitative relationship tp primary production in a humic content – J. Plankton Res. 11:985–1000.
  • 68. Tranvik L.J. 1990 – Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters – Appl. Environ. Microbiol. 56: 1672–1677
  • 69. Tranvik L.J. 1994 – Effects of colloidal organic matter on the growth of bacteria and protists in lake water – Limnol. Oceanogr. 39: 1276–1285.
  • 70. Tranvik l.J., Höfle M.G. 1987 – Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters – Appl. Environ. Microbiol. 53: 482–488.
  • 71. Tulonen T. 1993 – Bacterial production in a mesohumic lake estimated from [14C]Leucine incorporation ratio – Microb. Ecol. 26: 201–217.
  • 72. Tulonen T. 2004 – Role of allochthonous and autochthonous dissolved organic matter (DOM) as a carbon source for bacterioplankton in boreal humic lakes – Ph.D. Thesis, University of Helsinki, Finland.
  • 73. Wetzel R.G. 1975 – Limnology – W.B. Saunders Co., Philadelphia, London, and Toronto, XII + 743 pp.
  • 74. Wetzel R.G. 2001 – Limnology. Lake and River Ecosystems. 3rd Ed. – Academic Press, San Diego, XVI + 1006 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3624-3914
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.