PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Właściwości nanocząsteczek miedzi, platyny, srebra, złota i palladu

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Properties of nanoparticles of copper, platinum, silver, gold and palladium
Języki publikacji
PL
Abstrakty
PL
Nanostruktury znalazły zastosowanie w wielu dziedzinach, takich jak: medycyna, elektronika czy inżynieria optyczna i in. Do najpopularniejszych nanomolekuł metalicznych należą: nanomiedź, nanoplatyna, nanosrebro, nanozłoto i nanopallad. Niniejsze opracowanie ma na celu przedstawić charakterystykę właściwości wymienionych nanostruktur.
EN
Nanosized materials have been known to have technological applications in many areas sauch as medicine, electronics, optical engineering and others. Among the most popular nanomolecules we find: nanocopper, nanoplatinum, nanosilver, nanogold and nanopalladium. This paper's target is to introduce the characteristic of properties of nanostructures aforementioned.
Rocznik
Strony
197--209
Opis fizyczny
Bibliogr. 36 poz.,Rys., tab.,
Twórcy
autor
autor
autor
  • Instytut Chemii i Technologii Nieorganicznej, Wydział Inżynierii i Technologii Chemicznej, Politechnika Krakowska
Bibliografia
  • [1] Bruus H., Introduction to nanotechnology, MIC – Department of Micro- and Nanotechnology Technical University of Denmark. Lyngby, spring 2004, 1.
  • [2] Nano (www.nano.gov/html/facts/The_scale_of_things.html).
  • [3] Jie J., Zhang W., Bello I., Lee C., Lee S., One-dimensional II–VI 1nanostructures: Synthesis, properties and optoelectronic applications, Nano today,2010, 5, 313-336.
  • [4] Pike Biegunski M.J., Nanotechnologia w medycynie i farmacji, Lek w Polsce, 9’05, 207, 2005, 30-37.
  • [5] Kokura S., Handa O., Takagi T., Ishikawa T., Naito Y., Yoshikawa T., Silver nanoparticles as a safe preservative for use in cosmetics, Nanomedicine: nanotechnology, biology, and medicine, 2010, 6, 570-574.
  • [6] Kelsall R.W., Hamley I.W., Geoghegan M., Nanotechnologie, Wydawnictwo Naukowe PWN, Warszawa 2009, s. 30.
  • [7] Bioinfo (lib.bioinfo.pl/app/webroot/img/UserFiles/65944/Image/Figure%203.%20Diverse%20application%20of%20nanotechnology.JPG).
  • [8] Xia Y., Xiong Y., Lim B., Skrabalak S.E., Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48, 60-103.
  • [9] Sun Y., An C., Shaped gold and silver nanoparticles. Frontiers of Materials Science in China, DOI 10.1007/s11706-011-0100-1.
  • [10] Niemeyer C.M., Nanoparticles, proteins and nucleic acids: biotechnology meets materials science, Angewandte Chemie International Edition, 2001, 40, 4128-4158.
  • [11] Khan Z., Al.-Thabaiti S.A., Obaid A.Y., Al.-Youbi A.O., Preparation and characterization of silver nanoparticles by chemical reduction method, Colloids and Surfaces B: Biointerfaces, DOI:10.1016/j.colsurfb.2010.10.008.
  • [12] Uzio D., Nano-structured heterogeneous catalysts: one more step to an atomic scale design of the active surface, Saudi Aramco, R&DC, Process & Catalysis, Dhahran 31311.
  • [13] Mary G., Bajpai S.K., Chand N., Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties, Journal of Applied Polymer Science, 2009, 113, 757-766.
  • [14] Sinha A., Das S.K., Kumar T.V., V., Rao V., Ramachandrarao P., Synthesis of nanosized copper powder by an aqueous route, Journal of Materials Synthesis and Processing, 1999, 7, 6, 373-377.
  • [15] Khanna P.J., More P., Jawalkar J., Patil Y., Rao N.K., Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature, Journal of Nanoparticle Research, 2009, 11, 793-799.
  • [16] Wang X., Xu B., Xu Y., Yu H., Shi P., Liu Q., Preparation of nano-copper as lubrication oil additive, Journal of Central South University of Technology, 2005, 12, 2, 203-206.
  • [17] Huang Y., Dai H., Li W., Zhang Q., Zhao L., Li W., Preparation of nano-platinum and its catalytic activity toward methanol oxidation and oxygen reduction, Transactions of Nonferrous Metals Society of China, 2007, 17, 1006-1009.
  • [18] Mohamed R.M., Characterization and catalytic properties of nano-sized Pt metal catalyst on TiO2-SiO2 synthesized by photo-assisted deposition and impregnation methods, Journal of Materials Processing Technology, 2009, 209, 577-583.
  • [19] Zhou Y., Xian H., Li F., Wu S., Lu Q., Li Y., Wang L., Construction of hybrid nanocomposites containing Pt nanoparticles and poly(3-methylthiophene) nanorods at a glassy carbon electrode: characterization, electrochemistry, and electrocatalysis, Electrochimica Acta, 2010, 55, 5905-5910.
  • [20] Liu Z., Ling X.Y., Su X., Lee J.Y., Gan L.M., Preparation and characterization of Pt/C and Pt Ru/C electrocatalysts for direct ethanol fuel cells, Journal of Power Sources, 2005149, , 1-7.
  • [21] Zgłoszenie patentowe nr US 2004/0087441A1, USA.
  • [22] Murr L.E., Nanoparticulate materials in antiquity: the good, the bad and the ugly, Materials Characterization, 2009, 60, 261-270.
  • [23] Chen X., Schluesener H.J., Nanosilver: a nanoproduct in medical application, Toxicology Letters, 2008, 176, 1-12.
  • [24] Cho K., Park J., Osaka T., Park S., The study of antimicrobal activity and preservative effects of nanosilver ingredient, Electrochimica Acta, 2005, 51, 956-960.
  • [25] Zgłoszenie patentowe nr U.S. 6379712 B1, USA.
  • [26] Zgłoszenie patentowe nr U.S. 2006/0272542 A1, USA.
  • [27] Zgłoszenie patentowe nr U.S. 2005/0287112 A1, USA.
  • [28] Roe D., Karandikar B., Bonn-Savage N., Gibbins B., Roullet J.B., Antimicrobial surface functionalization of plastic catheters by silver nanoparticles, Journal of Antimicrobial Chemotherapy, 2008, 61, 869-876.
  • [29] Zhou X., Liu C., Zhang Z., Jian L., Li J., A novel nanogold multilayer constructed by Langmuir–Blodgett and self-assembly techniques, Journal of Colloid and Interface Science, 2005, 284, 354-357.
  • [30] Hutchings G.J., New Directions in gold catalysis, Gold Bulletin., 2004, 37, 1-2.
  • [31] Georgy M., Boucard V., Debleds O., Zotto C., Campagne J., Gold(III)-catalyzed direct nucleophilic substitution of propargylic alcohols, Tetrahedron 2009, 65, 1758-1766.
  • [32] Alanazi F.K., Radwan A.A., Alsarra I.A., Biopharmaceutical applications of nanogold, Saudi Pharmaceutical Journal, 2010, 18, 179-193.
  • [33] Wang M., Wang L., Wang G., Ji X., Bai Y., Li T., Gong S., Li J., Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody–antigen reactions, Biosensors and Bioelectronics, 2004, 19, 575-582.
  • [34] Ying Z., Ruo Y., Yaqin Chai, Dianping Tang, Ying Zhang, Na W., Xuelian L., Qiang Z., A reagentless amperometric immunosensor based on gold nanoparticles/thionine/Nafion-membrane-modified gold electrode for determination of α-1-fetoprotein. Electrochemistry Communications, 2005, 7, 355–360.
  • [35] Connor E.E., Mwamuka J., Gole A., Murphy C.J., Wyatt M.D., Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small. 2005, 31, 3, 25-327.
  • [36] Mukherjee D., Ghosh N., Superiority of palladium nano particles as hydrogenation catalysts over soluble and polystyrene anchored palladium complexes, Bulletin of the Catalysis Society of India, 2006, 5, 155-163.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3590-3882
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.