PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impedances and apparent masses of active human body models-seat systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Impedancje i masy wirtualne układu siedzisko-aktywny model ciała człowieka
Języki publikacji
EN
Abstrakty
EN
In the paper the driving point impedances and apparent masses of two active human seated body models in posture back-off and back-on were calculated. It was shown what are the mutual relations between the impedances and transfer functions of the seated human body models obtained from the experimental measurements and theoretical modeling. The influence of impedances of passive seats on total impedances and apparent masses of human body-seat systems was numerically calculated. The graphically shown comparison of the analytical expressions of the impedances and apparent masses of the considered models were presented.
PL
W artykule przedstawiono impedancje mechaniczne oraz masy wirtualne dwóch aktywnych modeli człowieka siedzącego w pozycjach z oparciem i bez oparcia. Impedancje i odpowiadające im masy wirtualne porównano z całkowitymi impedancjami i masami wirtualnymi obliczonymi dla układu siedzisko-człowiek dla siedziska sztywnego i siedziska biernego stanowiącego układ Kelvina-Voigta. Pokazano również zależności analityczne pomiędzy impedancjami a funkcjami przejścia rozważanego układu. Wpływ struktury i parametrów siedziska na całkowitą impedancję i masę wirtualną układu człowiek-siedzisko został przedstawiony za pomocą odpowiednich wzorów analitycznych oraz obliczeń numerycznych w postaci wykresów Bode.
Rocznik
Strony
83--95
Opis fizyczny
Bibliogr. 32 poz.,Rys., tab., wz.,
Twórcy
autor
  • Instytut Mechaniki Stosowanej, Wydział Mechaniczny, Politechnika Krakowska
Bibliografia
  • [1] Australian Standard AS 2993.1-1987, Vibration and shock dynamic characteristics of the human body, Part 1: Driving Point Impedance of the Human Body, 1-14.
  • [2] Blood R.P., Ploger J.D., Yost M.G., Ching R.P., Johnson P.W., Whole body vibration exposures in metropolitan bus drivers: A comparison of three seats, Journal of Sound and Vibration, 329, 2010, 109-120.
  • [3] Boileau P.E., Rakheja S., Wu X., A body mass dependent mechanical impedance model for applications in vibration seat testing, Journal of Sound Vibration, 253, 2002, 243-64.
  • [4] Fairley T.E., Griffin M.J., The apparent mass of the seated human body: vertical vibration, Journal of Biomechanics, 22, 1989, 81-94.
  • [5] Fairley T.E., Griffin M.J., The apparent mass of the seated human body in the fore-and-aft and lateral directions, Journal of Sound and Vibration, 139, 1990, 299-306.
  • [6] Griffin M.J., Handbook of Human Vibration, Academic Press, London 1990.
  • [7] Holmlund P., Lundström R., Lindberg L., Mechanical impedance of the human body in the vertical direction, Appl. Ergonomics 31, 2000, 415-22.
  • [8] Holmlund P., Lundström R., Mechanical impedance of the sitting human body in single-axis compared to multi-axis whole-body vibration exposure, Clin. Biomech 16 (Suppl 1), 2001, 101-110.
  • [9] Holmlund P., Absorbed power and mechanical impedance of the seated human measured within a real vehicle environment compared with single axis laboratory data, Journal of Low Freq. Noise and Vib. Active Control 18, 1999, 97-110.
  • [10] Hubard R.P., et all., New Biomechanical Models for Automobile Seat Design, Seat System Comfort and Safety, Sp-963, Society of Automotive Engineers, Inc., March 1993.
  • [11] Książek M.A., New active models of a sitting human body, Proceedings of the 11th Conference of the European Society of Biomechanics, Toulouse, July 8-11, 1998, France, Journal of Biomechanics, Vol. 31, Suppl. 1.
  • [12] Książek M.A., Modelowanie i optymalizacja układu człowiek–wibroizolator–maszyna, Monografia nr 244, Wyd. Politechniki Krakowskiej, 1999.
  • [13] Książek M.A., Active biomechanical models of a sitting human body, Proceedings of the 34th United Kingdom Group Meeting on Human Responses to Vibration, Dunton, Essex, September 22-24, England 1999.
  • [14] Książek M.A., Janik A., Dynamics of Active Biomechanical Models of Seated Human Body and Their Vibration Isolation Systems, Mechanics, Vol. 24, No. 2, 2005, 95-108.
  • [15] Książek M.A., Łuczko J., Optimal vibration isolation of a tractor – semi – trailer system, Vehicle System Dynamics, Publisher: Taylor & Francis, Vol. 45, No. 3, March 2007, 277-289.
  • [16] Książek M.A., Ziemiański D., Optimal active seat suspension for a hybrid model of a sitting human body, Papers of the 4th International Conference on Whole Body Vibration Injuries, June 2009, Montreal, Canada.
  • [17] Książek M.A., Dynamika Układów Mechanicznych, Seria Mechanika Techniczna, tom II, Część VII „Wybrane problemy wibracji układu człowiek – maszyna”, pod redakcją J. Nizioła, Wyd. Komitetu Mechaniki PAN, Instytut Podstawowych Problemów Techniki PAN, Warszawa 2005.
  • [18] Lundström R., Holmlund P., Lindberg L., Absorption of energy during vertical whole-body vibration exposure, Journal of Biomechanics, 31, 1998, 317-26.
  • [19] Mansfield N.J., Griffin M.J., Effect of magnitude of vertical whole-body vibration on absorbed power for the seated human body, Journal of Sound and Vibration, 215, 1998, 813-826.
  • [20] Lundström R., Holmlund P., Absorption of energy during whole-body vibration exposure, Journal of Sound and Vibration, 215, 1998, 789-800.
  • [21] Mansfield N.J., Maeda S., Comparison of the apparent mass of the seated human measured using random and sinusoidal vibration, Industrial Health 43, 2005, 233-240.
  • [22] Mansfield N.J., Griffin M.J., Effects of posture and vibration magnitude on apparent mass and pelvis rotation during exposure to whole-body vertical vibration, Journal of Sound and Vibration, 253, 2002, 93-107.
  • [23] Mansfield N.J., Holmlund P., Lundström R., Apparent mass and absorbed power during exposure to whole-body vibration and repeated shocks, Journal of Sound and Vibration, 248, 2001, 427-440.
  • [24] Mansfield N.J., Lundström R., The apparent mass of the human body exposed to non-orthogonal horizontal vibration, Journal of Biomechanics, 32, 1999, 1269-1278.
  • [25] Mansfield N.J., Lundström R., Models of the apparent mass of the seated human body exposed to horizontal whole-body vibration, Aviation, Space and Environmental Medicine, 70, 1999, 1166-1172.
  • [26] Mansfield N.J., Holmlund P., Lundström R., Comparison of subjective responses to vibration and shock with standard analysis methods and absorbed power, Journal of Sound and Vibration, 230, 2000, 477-491.
  • [27] Mitschke M., Dynamika samochodu, tom 2, Drgania, WKiŁ, Warszawa 1989.
  • [28] Paddan G.S., Griffin M.J., Transmission of vibration through the human body to the head: a summary of experimental data, in ISVR Technical Report No. 218, 1993
  • [29] Rakheja S., Haru I., Boileau P.E., Seated occupant apparent mass characteristics under automotive postures and vertical vibration, Journal of Sound Vibration, 253, 2002, 57-75.
  • [30] Smith S.D., Modeling differences in the vibration response characteristics of the human body, Journal of Biomechanics, 33, 2000, 1513-1516.
  • [31] Wang W., Rakheja S., Boileau P.E., Effects of sitting postures on biodynamic response of seated occupants under vertical vibration, International Journal of Industrial Ergonomics, 34, 2004, 289-306.
  • [32] Wu X., Rakheja S., Boileau P.E., Analyses of relationships between biodynamic response functions, Journal of Sound and Vibration, 226(3), 1999, 595-606.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3590-3821
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.