PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability relationships of REE-bearing phosphates in an alkali-rich system (nepheline syenite from the Mariupol Massif, SE Ukraine)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Primary REE-enriched fluorapatite and fluorbritholite-(Ce) in nepheline syenite from the Mariupol Massif (SE Ukraine), contain textural and chemical evidence of late- to post-magmatic metasomatic alteration. REE mobilization and replacement of the primary phases by fluid-mediated coupled dissolution-reprecipitation strongly depended on the distance between the altered minerals in the host rock. Fluorapatite and fluorbritholite-(Ce) forming individual pristine grains were partially replaced by the same phase with a new composition, resulting in the presence of patchy zoning in altered grains. the increased REE contents in altered fluorapatite rim domains are related to REE mobilization from the altered REE-depleted rim domains of the fluorbritholite-(Ce). The REEs were transported by a fluid with high F activity. The alteration of fluorapatite and fluorbritholite-(Ce) grains in contact resulted in the partial replacement of the primary phases by the same phase with a new composition, but also in the partial replacement of the fluorapatite by secondary monazite and fluorite. The REE mobilized from the fluorbritholite-(Ce) in the presence of a F-rich fluid in an alkali-rich system promoted formation of monazite as the new phosphate REE-host. The presence of secondary parisite in the altered domains of the fluorapatite and fluorbritholite-(Ce) indicates a CO2 component in the fluid during metasomatic alteration.
Rocznik
Strony
247--265
Opis fizyczny
Bibliogr. 58 poz., rys., tab.,
Twórcy
autor
autor
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection Department of Mineralogy, Petrography and Geochemistry, al. A. Mickiewicza 30, PL-30-059 Kraków, Poland, dumanska@uci.agh.edu.pl
Bibliografia
  • 1. Bea, F. 1996. Residence of REE, Y, Th and U in granites and crustal protoliths; Implications for the chemistry of crustal melts. Journal of Petrology, 37 (3), 521–552.
  • 2. Berger, A., Gnos, E., Janots, E., Fernandez, A. and giese, J. 2008. Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chemical Geology, 254, 238–248.
  • 3. Bingen, B., Demaiffe, D. and Hertogen, J. 1996. Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway. Geochimica et Cosmochimica Acta, 60 (8), 1341–1354
  • 4. Broska, I. and Siman, P. 1998. The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric granites. Geologica Carpathica, 49, 161–167.
  • 5. Broska, I., Petrík, I. and Williams, C.T. 2000. Coexisting monazite and allanite in peraluminous granitoids of the Tribec Mountains, Western Carpathians. American Mineralogist, 85, 22–32
  • 6. Broska, I., Williams, C.T., Janák, M. and Nagy, G. 2005. Alteration and breakdown of xenotime-(Y) and monazite- (Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos, 82, 71–83.
  • 7. Budzyń, B., Hetherington, C.J., Williams, M.L., Jercinovic, M.J. and Michalik, M. 2010. Fluid-mineral interactions and constraints on monazite alterations during metamorphism. Mineralogical Magazine, 74 (4), 633–655
  • 8. Budzyń B., Harlov D.E., Williams M.L. and Jercinovic M.J. 2011. Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist, 96, 1547–1567.
  • 9. Claeson, D.T. 2002. Stability of REE-bearing minerals in a metaluminous leucotonalite from the Eriksberg gabbro, Transscandinavian Igneous Belt, Sweden. Neues Jahrbuch für Mineralogie, Abhandlungen, 177 (3), 277–291.
  • 10. Donskoy, A.N. 1982. The nepheline complex of alkaline Oktyabr’skii massif, pp. 1–150. The Ukrainian Academy of Science, Kiev. [In Ukrainian]
  • 11. Dumańska-Słowik, M. Sikorska, M. and Heflik, W. 2011a. Dissolved-recrystallized zircon from mariupolite in the Mariupol Massif, Priazovje (SE Ukraine). Acta Geologica Polonica, 61 (3), 277–288.
  • 12. Dumańska-Słowik, M., Baranov, P, Heflik, W., Natkaniec-Nowak, L., Shevchenko, S. and Tsotsko, L.I. 2011b. Mariupolites of the Oktyabrsky Massif (SE Ukraine) – a less known rocks in the gemstone trade. Zeitschrift der Deutschen Gemmologischen Gesellschaft, 60, 37–48.
  • 13. Finger, F., Broska, I., Roberts, M.P. and Schermaier, A. 1998. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. American Mineralogist, 83, 248–258.
  • 14. Finger, F. and Krenn, E. 2007. Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos, 95, 103–115.
  • 15. Fleet, M.E., Liu, X. and Pan, Y. 2000. Rare-earth elements in chlorapatite [Ca10(PO4)6Cl2]: Uptake, site preference, and degradation of monoclinic structure. American Mineralogist, 85, 1437–1446.
  • 16. Harlov, D.E., Förster, H.J. and Schmidt, C. 2003. High P–T experimental metasomatism of a fluoroapatite with significant britholite and fluorellesadite components: implications for LREE mobility during granulite-facies metamorphism. Mineralogical Magazine, 67 (1), 61–72.
  • 17. Harlov, D.E. and Förster, H.J. 2003. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist, 88, 1209–1229.
  • 18. Harlov, D.E., Wirth R. and Förster, H.J. 2005. An experimental study of dissolution-reprecipitation in fluoroapatite: fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150, 268–286.
  • 19. Harlov, D.E., Marschall, H.R. and Hanel, M. 2007. Fluorapatite-monazite relationships in granulite-facies metapelites, Schwarzwald, southwest Germany. Mineralogical Magazine, 71 (2), 223–234.
  • 20. Harlov, D.E., Wirth, R. and Hetherington, C.J. 2011. Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contributions to Mineralogy and Petrology, 162, 329–348.
  • 21. Harlov, D.E. and Wirth, R. 2012. Experimental incorporation of Th into xenotime at middle to lower crustal P-T utilizing alkali-bearing fluids. American Mineralogist, 97, 641–652.
  • 22. Hetherington, C.J. and Harlov, D.E. 2008. Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: Mechanics and fluid chemistry. American Mineralogist, 93, 806–820.
  • 23. Hetherington, C.J., Harlov, D.E. and Budzyń, B. 2010. Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineralogy and Petrology, 99 (3–4), 165–184
  • 24. Hughes, J.M. and Rakovan, J. 2002. The Crystal Structure of Apatite, Ca5(PO4)3(f,OH,CL). In: M.J. Kohn, J. Rakovan and J.M. Hughes (Eds), Phosphates – Geochemical, Geological and Materials Importance. Reviews in Mineralogy and Geochemistry, 48, 1–12.
  • 25. Janots, E., Negro, F., Brunet, F., Goffé, B., Engi, M. and Bouybaouène, M.L. 2006. Evolution of the REE mineralogy in HP–LT metapelites of the Sebtide complex, Rif, Morocco: Monazite stability and geochronology. Lithos, 87, 214–234.
  • 26. Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.-O. and Spandler, C. 2008. Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610°c. Journal of Metamorphic Geology, 26 (5), 509–526.
  • 27. Janots, E., Berger, A. and Engi, M., 2011. Physico-chemical control on the REE minerals in chloritoid-grade metasediments from a single outcrop (Central Alps, Switzerland). Lithos, 121, 1–11.
  • 28. Kempe, U., Lehmann, B., Wolf, D., Rodionov, N., Bombach, K., Schwengfelder, U. and Dietrich, A. 2008. U-Pb SHRIMP geochronology of Th-poor, hydrothermal monazite: An example from the Llallagua tin-porphyry deposit, Bolivia. Geochimica et Cosmochimica Acta, 72, 4352–4366.
  • 29. Krenn, E. and Finger, F. 2007. Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece: Microprobe data and geochronological implications. Lithos, 95, 130–147
  • 30. Krivdik, S.G., Nivin, V.A., Kul’chitskaya, A.A., Voznak, D.K., Kalinichenko, A.M., Zagnitko, V.N. and Dubyna, A.V. 2007. Hydrocarbons and other volatile components in alkaline rocks from the Ukrainian Shield and Kola Penisula. Geochemistry International, 45 (3), 270–294.
  • 31. Lee, D.E. and Dodge, F.C.W. 1964. Accessory minerals in some granitic rocks in California and Nevada as a function of calcium content. American Mineralogist, 49, 1660–1669.
  • 32. Lee, D.E. and Bastron, H. 1967. Fractionation of rare-earth elements in allanite and monazite as related to geology of the Mt. Wheeler mine area, Nevada. Geochimica et Cosmochimica Acta, 31, 339–356.
  • 33. Morozewicz, J. 1902. Über Mariupolit, ein extremes Glied der Elaeolithsyenite. Tschermaks Mineralogische und Petrographische Mitteilungen 21, 238–246.
  • 34. Morozewicz, J. 1929. Mariupolite and its relatives. Prace Polskiego Instytutu Geologicznego 2 (3), p. 130. [In Polish]
  • 35. Ondrejka, M., Uher, P., Putiš, M., Broska, I., Bačík, P., Konečný, P. and Schmidt, I. 2012. Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: An example from the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos, doi: 10.1016/j.lithos.2012.03.012
  • 36. Pan, Y. and Fleet, M.E. 1996. Rare element mobility during prograde granulite facies metamorphism: significance of fluorine. Contributions to Mineralogy and Petrology, 123, 251–262.
  • 37. Pan, Yu. and Fleet, M. 2002. Compositions of apatite-group minerals: substitution mechanisms and controlling factors. In: M.J. Kohn, J. Rakovan, J.M. Hughes (Eds), Phosphates – Geochemical, Geological and Materials Importance. Reviews in Mineralogy and Geochemistry, 48, 13–49.
  • 38. Piccoli, P.M. and Candela, P.A. 2002. Apatite in igneous systems. In: M.J. Kohn, J. Rakovan, J.M. Hughes (Eds), Phosphates – Geochemical, Geological and Materials Importance. Reviews in Mineralogy and Geochemistry, 48, 255–292.
  • 39. Pouchou, I. L. and Pichoir, F. 1985. “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. In: I.T. Armstrong (Ed.), Microbeam Analysis, pp. 104–106. San Francisco Press; San Francisco.
  • 40. Putnis, A. 2002. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689–708.
  • 41. Putnis, A. 2009. Mineral replacement reactions. In: E.H. Oelkers and J. Schott (Eds), Thermodynamics and Kinetics of Water-Rock Interaction. Reviews in Mineralogy and Geochemistry, 70, 87–124.
  • 42. Rasmussen, B. and Muhling, J.R. 2009. Reactions destroying detrital monazite in greenschist-facies sandstones from the Witwatersrand basin, South Africa. Chemical Geology, 264, 311–327.
  • 43. Read, D., Andreoli, M.A.G., Knoper, M., Williams, C.T. and Jarvis, N. 2002. The degradation of monazite: Implications for the mobility of rare-earth and actinide elements during low-temperature alteration. European Journal of Mineralogy, 14, 487–498.
  • 44. Rønsbo, J.G. 1989. Coupled substitution involving REEs and Na and Si in apatites in alkaline rocks from the Llimaussag intrusion, South Greenland, and the petrological implications. American Mineralogist, 74, 896–901.
  • 45. Rønsbo, J.G. 2008. Apatite in the Llimaussag alkaline complex: Occurrence, zonation and compositional variation. Lithos, 106, 71–82.
  • 46. Seydoux-Guillaume, A.M., Paquette, J.L., Wiedenbeck, M., Montel, J.M., and Heinrich, W. (2002a) Experimental resetting of the U-Th-Pb systems in monazite. Chemical Geology, 191, 165–181.
  • 47. Sharygin, V.V., Krivdik, S.G., Pospelova, l.N. and Dubina, A.V. 2009. Zn-kupletskite and hendricksite in the agpaitic phonolites of the Oktyabrskii Massif, Azov Region, Ukraine. Doklady Earth Sciences, 425A (3), 499–504.
  • 48. Solodov, N.A. 1985. The mineralo-genesis of rare metal formations, pp. 1–225. Niedra. [In Ukrainian]
  • 49. Spear, F.S. 2010. Monazite–allanite phase relations in metapelites. Chemical Geology, 279, 55–62.
  • 50. Teufel, S. and Heinrich, W. 1997. Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: an SEM and U-Pb isotope study. Chemical Geology, 137, 273–281.
  • 51. Tichonienkova, R.J, Osokin, J.D. and Gonzjejev, A.A. 1967. Rare-metals metasomatites of alkaline massives, pp. 1–196. Nauka. [In Ukrainian]
  • 52. Tropper, P. and Manning, C.E. 2007. The solubility of fluorite in H2O and H2O–NaCl at high pressure and temperature. Chemical Geology, 242, 199–306.
  • 53. Tomkins, H.S. and Pattison, D.R.M. 2007. Accessory phase petrogenesis in relation to major phase assemblages in pelites from the Nelson contact aureole, southern British Columbia. Journal of Metamorphic Geology, 25, 401–421.
  • 54. Upadhyay, D. and Pruseth, K.L. 2012. Fluid-induced dissolution breakdown of monazite from Tso Morari complex, NW Himalayas: evidence for immobility of trace elements. Contributions to Mineralogy and Petrology, doi: 10.1007/s00410-012-0739-3.
  • 55. Williams, M.L., Jercinovic, M.J., Harlov, D.E., Budzyń, B. and Hetherington, C.J. 2011. Resetting monazite ages during fluid-related alteration. Chemical Geology, 283, 218–225.
  • 56. Wing, B., Ferry, J.M. and Harrison, T.M. 2003. Prograde de struction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology, 145, 228–250
  • 57. Volkova, T.P. 2000. The genesis and ore mineralization of alkaline rocks from the Oktyabr’skii Massif. Sbornik nauchnykh trudov, 4, 9–10. [In Ukrainian]
  • 58. Volkova, T.P. 2001. The productivity criterion of REE and ore mineralization within rocks of the Oktyabr’skii Massif Naukovi praci DonDTU., 36, 63–69. [In Ukrainian]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3577-3734
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.