PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Models for water steam condensing flows

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abstract The paper presents a description of selected models dedicated to steam condensing flow modelling. The models are implemented into an in-house computational fluid dynamics code that has been successfully applied to wet steam flow calculation for many years now. All models use the same condensation model that has been validated against the majority of available experimental data. The state equations for vapour and liquid water, the physical model as well as the numerical techniques of solution to flow governing equations have been presented. For the single-fluid model, the Reynolds-averaged Navier-Stokes equations for vapour/liquid mixture are solved, whereas the two-fluid model solves separate flow governing equations for the compressible, viscous and turbulent vapour phase and for the compressible and inviscid liquid phase. All described models have been compared with relation to the flow through the Laval nozzle.
Twórcy
autor
Bibliografia
  • [1] HEILER M.: Instationaere Phaenomene in homogen/heterogen kondensierenden Duesen- und Turbinenstroemungen. PhD thesis, Universität Karlsruhe, Karlsruhe 1999.
  • [2] DYKAS S.: Numerical calculation of the steam condensing flow. TASK Quarterly, Scientific Bulletin of Academic Computer Centre in Gdańsk 5(2001), 4, 519-535.
  • [3] WHITE A.J., YOUNG J.B., WALTERS P.T.: Experimental validation of condensing flow theory for a stationary cascade of steam turbine blade. Philosophical Transaction of Royal Society London A 354(1996), 59–88.
  • [4] BAKHTAR F., WHITE A.J., MASHMOUSHY H.: Theoretical treatments of two-dimensional, two-phase flows of steam and comparison with cascade measurements. Proc. of the Institution of Mechanical Engineers, Part C, J. Mechanical Engineering Science 219(2005), 1335–1355.
  • [5] KARKOSZKA K., ANGLART H.: CFD modelling of laminar film and spontaneous condensation in presence of noncondensable gas. Archives of Thermodynamics 27 (2006), 2, 23–36.
  • [6] DYKAS S., WRÓBLEWSKI W., LUKOWICZ H.: Prediction of losses in the flow through the last stage of low pressure steam turbine. Int. J. Numer. Meth. Fluids 53(2007), 933–945.
  • [7] WRÓBLEWSKI W., DYKAS S., GARDZILEWICZ A., KOLOVRATNIK M.: Numerical and experimental investigations of steam condensation in LP part of a large power turbine. Trans. ASME J. Fluids Eng. 131(2009), 4, 041301.
  • [8] FRENKEL J.: Kinetic Theory of Liquids., Oxford University Press, New York 1946.
  • [9] GYARMATHY G.: Grunglagen einer Theorie der Nassdampfturbine. PhD. thesis, Juris Verlag, Zürich 1960.
  • [10] KANTROWITZ A.: Nucleation in very rapid vapour expansions. J. Chemical Physics 19(1951), 1097–1100.
  • [11] GORBUNOV B., HAMILTION R.: Water nucleation on aerosol particles containing both soluble and insoluble substances. J. Aerosol Sci. 28(1997), 2, 239-248.
  • [12] BARSCHDORFF D.: Verlauf der Zustandsgrossen und gasdynamische Zusammenhange der spontanen Kondensation reinen Wasserdampfes in Lavalduesen. Forschung im Ingenieurwesen 37(1971), 5, 146–157.
  • [13] WRÓBLEWSKI W., DYKAS S., GEPERT A.: Steam condensing flow in turbine channels. Int. J. Multiphase Flow 35(2009), 6, 498–506.
  • [14] WRÓBLEWSKI W., DYKAS S., GEPERT A.: Modelling Water Vapour Flow with Heterogeneous Condensation. Wydawnictwo Politechniki Śląskiej. Gliwice 2006 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3577-3672
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.