Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the experiment, bubbles were generated from two brass nozzles with inner diameters of 1.1 mm. They were submerged in the glass tank filled with distilled water. There have been measured the air pressure fluctuations and the signal from the laser-phototransistor sensor. For analysis of the pressure signal the correlation (the normalized cross - correlation exponent) and non-linear analyses have been used. It has been shown that hydrodynamic interactions between bubbles can lead to bubble departure synchronization. In this case the bubble departures become periodic. The results of calculation of correlation dimension and the largest Lyapunov exponent confirm that hydrodynamic bubble interactions observed for 4 mm spacing between nozzels cause the periodic bubble departures from two neighbouring nozzles.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
123--137
Opis fizyczny
Bibliogr. 19 poz.,
Twórcy
autor
autor
- Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45C, 15-351 Białystok, r.mosdorf@pb.edu.pl
Bibliografia
- [1] MARTIN M., GARCIA J.M., MONTES F.J., GALAN M.A.: On the effect of the orifice configuration on the coalescence of growing bubbles. Chemical Engineering and Processing 47(2008), 9-10, 1799–1809.
- [2] KAZAKIS N.A., MOUZA A.A., PARAS S.V.: Coalescence during bubble formation at two neighbouring pores: An experimental study in microscopic scale. Chemical Engineering Science 63(2008), 21, 5160–5178.
- [3] MARTÍN M., MONTES F.J., GALAN M.A.: Bubble coalescence at sieve plates: II. Effect of coalescence on mass transfer. Superficial area versus bubble oscillations. Chemical Engineering Science 62(2007), 6, 1741–1752.
- [4] CIESLINSKI J.T., MOSDORF R.: Gas bubble dynamics experiment and fractal analysis. Int. J. Heat and Mass Transfer 48(2005), 9, 1808–1818.
- [5] FEMAT R., RAMIREZ J.A., SORIA A.: Chaotic flow structure in a vertical bubble column. Physics Letters A 248(1998), 1, 67–79.
- [6] NGUYEN K., et al.: Spatio-temporal dynamics in a train of rising bubbles. The Chemical Engng J. 65(1998), (1996), 1, 191–197.
- [7] LI H.Z., et al.: Chaotic bubble coalescence in non-Newtonian fluids. Int. J. Multiphase Flow 23(1997), 4, 713–723.
- [8] TRITTON D.J., EGDELL C.: Chaotic bubbling. Phys. Fluids A 5(1993), 2, 503–505.
- [9] ZHANG L., SHOJI M.: Aperiodic bubble formation from submerged orifice. Chemical Engineering Science 56(2001), 18, 5371–5381.
- [10] RUZICKA M.C., BUNGANIC R., DRAHOŠ J.: Meniscus dynamics in bubble formation. Part I: Experiment. Chemical Engineering Research and Design 87(2009), 10, 1349–1356.
- [11] RUZICKA M.C., BUNGANIC R., DRAHOŠ J.: Meniscus dynamics in bubble formation. Part II: Model. Chemical Engineering Research and Design 87(2009), 10, 1357–1365.
- [12] VAZQUEZ A., MANASSEH R., SÁNCHEZ R.M., Metcalfe G.: Experimental comparison between acoustic and pressure signals from a bubbling flow. Chemical Engineering Science 63(2008), 24, 5860–5869.
- [13] RUZICKA M.C., et al.: Intermittent transition from bubbling to jetting regime in gas-liquid two phase flows. Int. J. Multiphase Flow 23(1997), 4, 671–682.
- [14] MOSDORF R., SHOJI M.: Chaos in bubbling – nonlinear analysis and modelling. Chemical Engineering Science 58(2003), 17, 3837–3846.
- [15] MOSDORF R., WYSZKOWSKI T., DĄBROWSKI K.K.: Multifractal properties of large bubble paths in a single bubble column. Archives of Thermodynamic 32(2011), 1, 1–18.
- [16] MOSDORF R., WYSZKOWSKI T.: Frequency and non-linear analysis of bubble paths in bubble chain. Acta Mechanica et Automatica 4(2010), 1, 72–80.
- [17] GAJEK L., KALUSZKA M.: Statistics, models and methods. WNT Warsaw 2000 (in Polish).
- [18] SCHUSTER H.G.: Deterministic Chaos. An Introduction, PWN, Warszawa 1993 (in Polish).
- [19] WOLF A., SWIFT J.B., SWINNEY H.L., VASTANO J.A.: Determining Lyapunov Exponent from a Time series. Physica D 16(1985), 3, 285–317.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3576-3601