Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Badania stało- i zmiennoprądowego hoppingowego przewodnictwa elektrycznego w ferroelektrycznym Pb[(Fe[1/3]Sb[2/3])[x]Ti[y]Zr[z]]O[3]
Języki publikacji
Abstrakty
In the paper results of the dc and ac conductivity measurements in ferroelectric ceramics Pb[(Fe[1/3]Sb[2/3])[x]Ti[y]Zr[z]]O[3] with x + y + z = 1, x = 0.1 and y = 0.43 - 0.47 are presented. The measurements have been carried out in the temperature range 77-750 K. DC conductivity in the range low temperature obeys Mott's law [sigma](0) [tilde] exp[-(T[0]/T)[^1/4]]. The values of T[0] are the order 10[^6] K. In the high temperature range dc conductivity shows an activated temperature dependence. Ac conductivity has been measured in the range of frequency 50 Hz-100 kHz. It is shown that ac conductivity fulfills the relations [sigma]([omega]) [tilde] [omega][^S], where the power exponent depends on temperature and frequency. The values of the density of states at the Fermi level N(E[F]), the most probable Mott's hopping distance R and hopping energy W were also determined.
W artykule przedstawiono wyniki pomiarów przewodnictwa zmienno- i stałoprądowego ferroelektrycznej ceramiki [Pb(Fe[1/3]Sb[2/3])[x]Ti[y]Zr[z]]O[3] gdzie x + y + z = 1, x = 0,1 i y = 0,43 -0,47. Pomiary zostały wykonane w zakresie temperatur 77-750 K. Przewodnictwo stałoprądowe w niskich temperaturach jest opisane prawem Motta [sigma](0) [tylda] exp[-(T[0]/T)[^1/4]]. Wartość T[0] jest rzędu 10[^6] K. W zakresie wysokich temperatur przewodnictwo stałoprądowe ma charakter aktywacyjny. Przewodnictwo zmiennoprądowe zostało zmierzone w zakresie od 50 Hz do 100 kHz. Przewodnictwo zmiennoprądowe jest opisane zależnością [sigma]([omega]) [tylda][omega][^S], gdzie wykładnik potęgowy jest zależny zarówno od temperatury, jak i częstotliwości. W pracy wyznaczono również wartości gęstości stanów na poziomie Fermiego N(E[F]), najbardziej prawdopodobną odległość hoppingu Motta R i energię hoppingu W.
Czasopismo
Rocznik
Tom
Strony
59--75
Opis fizyczny
Bibliogr. 48 poz.,Wz., tab., wykr.,
Twórcy
autor
autor
- Wydział Fizyki, Matematyki i Informatyki Stosowanej, Politechnika Krakowska
Bibliografia
- [1] Lines M.E., Glass A.M., Principles and Applications of Ferroelectrics and Related Materials, Oxford: Claredon Press 1977.
- [2] Xu Y., Ferroelectric materials and their applications, North Holland, Amsterdam, London, New York 1991.
- [3] Helke G., Röder G., Ternäre feste Lösungen als leistungsfähige piezokieramishe Werkstoffe, Hermsdorf Techn. Mitt., 54, 1979, 1729-1734.
- [4] Osak A., Ptak W.S., Osak W., Strzałkowska C., Dielectric and Electric Properties of Policrystaline [Pb(Fe1/3Sb2/3)xTiyZrz]O3, Ferroelectrics, 154, 1994, 247-252.
- [5] Jankowska-Sumara I., Dielectric and Pyroelectric Properties of [Pb(Fe1/3Sb2/3)xTiyZrz]O3 Ceramics, Ferroelectrics, 345, 2006,115-122.
- [6] Jankowska-Sumara I., Osak A., Field Introduced Electrostrictive Response in [Pb(Fe1/3Sb2/3)xTiyZrz]O3 Ceramics, Phase Transitions, 81, 2008, 331-340.
- [7] Jankowska-Sumara I., Śmiga W., Bujakiewicz-Korońska R., The Piezoelectric Effect in [Pb(Fe1/3Sb2/3)xTiyZrz]O3 Ceramics, Phase Transition, 81, 2008, 1107-1115.
- [8] Osak A.P., Pawelczyk M., Ptak W.S., Investigation of the Structure, Pyro- and Piezoelectric Properties of of a Ferroelectric Ceramic of PZT+(FeSb), Ferroelectrics, 186, 1996, 123-126.
- [9] Osak A., Jankowska-Sumara I., Electrical Transport in Ferroelectric Pb[(Fe1/3Sb2/3)xTiyZrz]O3 Ceramics, Phase Transitions, 82, 2009, 899-909.
- [10] Osak A., Hopping Electrical Conductivity in Ferroelectric Pb[(Fe1/3Sb2/3)xTiyZrz]O3, Ferroelectrics, 418, 2011, 52-59.
- [11] Böttger H., Bryksin V.V., Hopping Conduction in Solids, Verlag, Berlin 1985.
- [12] Mott N.F., Conduction in non-crystalline materials, Phil. Mag., 19, 1969, 835-852.
- [13] Austin I.G., Mott N.F., Polarons in Crystalline and Non-crystalline Materials, Adv. Physics, 18, 1969, 41-102.
- [14] Ambegaokar V., Halperin B.J., Langer J.S., Hopping Conductivity in Disordered Systems, Phys. Rev. B, 4, 1971, 2612-2620.
- [15] Pollak M., On the Frequency Dependence of Conductivity in Amorphous Solids, J. of Non-cryst. Solids, 23, 1971, 519-542.
- [16] Seager C.H., Pike G.E., Percolation and Conductivity: A computer study, Phys. Rev. B, 10, 1974, 1435-1445.
- [17] Skal A.S., Shklovski B.I., O Formule Motta Dlja Nizkotempieraturnoj Pryzkowoj Prowodimosti. (in Russian), Fiz. Tver. Tela, 16, 1976, 1820-1822.
- [18] Hill R.M., Jonscher A.K., DC and AC Conductivity in Hopping Electronic Systems, J. of Non-cryst. Solids, 32, 1979, 53-69.
- [19] Brenig W., Döhler G.H., Wölfle P, Thermally Assisted Hopping Transport in Disordered Systems, Z Physik, 285, 1973, 381-400.
- [20] Miller A., Abrahams E., Impurity Conduction at Low Concentrations, Phys. Rev., 120, 1960, 745-755.
- [21] Kirkpatrick S., Percolation and Conduction Rev, Mod. Physics, 45, 1973, 574-588.
- [22] Böttger H., Bryksin V.V., Hopping Conductivity in Ordered and Disordered Solids I, Phys. Status Solidi (b), 78b, 1976, 9-56 II b 78, 415-451.
- [23] Butcher P.N., Hayden K.J., Mc Innes J.A., Analitical Formulae for Dc Hopping Conduction, Phil. Mag, 36, 1977, 19-32.
- [24] Maschke K., Overhof H., Thomas P., On the Variable Range Hopping near the Fermi Energy, Phys. Status Solidi (b), 62, 1974, 113-122.
- [25] Sklovski B.J., Efros A.L., Zh. eksp. teor. Fiz, 60, 1971, 687.
- [26] Rehwald W., Kiess H., Bingelli B., Frequency Dependent Conductivity in Polymer and Other Disordered Materials, Z. Phys. B Cond. Matter, 68, 1987, 143-148.
- [27] Fishchuk J.J., Hertel D., Bässler H., Kadashuk A.K., Effective-Medium Theory of Hopping Charge Carrier Transport in Weekly Disordered Organic Solids, Phys. Rev. B, 65, 2002, 125-201.
- [28] Lin Y.Q., Chen X.M., Dielectric Relaxation and Polaronic Conduction in Double Perovskite La2MgMnO6, Appl. Phys. Letts, 96, 2010, 142 902-1.
- [29] Ghosh A., Bhattacharya S., Ghosh A., Tunneling of Large Polarons in Semiconducting Zinc Vanadate Glasses, J. of Phys. Condensed Matter, 2009, 21, 145802 (5pp).
- [30] Suchanicz J., Behavior of Na0.5Bi0.5TiO3 Ceramics in ac Electric Field, Ferroelectrics, 209, 1998, 561-8.
- [31] Pike G.E., ac Conductivity of Scandium Oxide and New Hopping Model for Conductivity, Phys. Rev. B, 6, 1972, 1572-1580.
- [32] Elliott S.R., A. c. Conduction in Amorphous Chalcogenide and Pnictide Semiconductors, Adv. Phys., 36, 1987, 135-218.
- [33] Long A.R., Frequency-dependent loss in amorphous semiconductors, Adv. Phys., 31, 1982, 553-637.
- [34] Elliott S.R., A Theory of a.c. Conduction in Chalcogenide Glasses, Phil. Mag., 36, 1977,1291-1304.
- [35] Mansingh A., Sayer M., Webb J.B., Electrical Conduction in Amorphous WO3 Films, J. of Non-Cryst. Solids, 28, 1978, 123-137.
- [36] Hill R.M., The Frequency Dependence of Variable Range Hopping Phys, Stat. Solidi (a), 39, 1977, 615-620.
- [37] Pollak M., Geballe T.H., Low-Frequency Conductivity Due to Hopping Processes in Silicon, Phys. Rev., 1961, 122, 1742-1753.
- [38] Pollak M., On the Frequency Dependence of Conductivity in Amorphous Solids, Phil. Mag., 23, 1976, 519-542.
- [39] Butcher P.N., Hayden K.J. Analitical Formulae for d.c. Hopping Conductivity Degenerate Hopping in Wide Bands, Phil. Mag., 36, 1977, 657-676.
- [40] Böttger H., Bryksin V.V., Fiz. Tverd. Tela, 17, 1975, 2920.
- [41] Butcher P.N., On the Rrate Equation Formulation of the Hopping Conductivity Problem, J. Phys C Solid Stat Phys., 5, 1972, 1817-1829.
- [42] Dyre J.C., The Random Free-Energy Barrier Model for ac Conduction in Disordered Solids, J. of Appl. Phys., 64, 1988, 2456-2468.
- [43] Hill R.M., Variable-Range Hopping, Phys. Stat. Solidi (a), 34, 1976, 601-613.
- [44] Pollak M., A Percolation Treatment of the Hopping Conduction, J. of Non-crystal Solids, 11, 1972, 1-24.
- [45] Butcher P.N., Stochastic Interpretation of the Rate Equation Formulation of Hopping Transport Theory, J. Phys. C Solid State Phys, 7, 1974, 879-892.
- [46] Scher H., Lax M., Stochastic Transport in Disordered Solids I Theory II Impurity Conduction, Phys. Rev. B, 7, 1973, 4491-502, 4502-19.
- [47] Kivelson S., Hopping Conductions and Continuous-Time Random Model, Phys. Rev. B, 21, 1980, 5755-5767.
- [48] Desu S.B., Interfacial Effects in Perovskites Key Enginering Materials, 66-67, 1992, 375-420.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3546-3501