PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stochastic assessment by Monte Carlo simulation for LCI applied to steel process chain: the ArcelorMittal Steel Poland S.A. in Krakow, Poland, case study

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Symulacja Monte Carlo w stochastycznej analizie zbioru wejść i wyjść LCI procesu produkcji stali na przykładzie kombinatu metalurgicznego ArcelorMittal Poland S.A. w Krakowie
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is stochastic approach for LCA/LCI probabilistic conception with uncorrelated input/output data in steel process chain with six processes (including Coke Plant, Iron Blast Furnace, Sintering Plant, BOF, Continuous Steel Casting and Hot Rolling Mill) applied to the ArcelorMittal Steel Poland (AMSP) S.A. in Krakow, Poland, case study. Uncertainty assessment in LCI based on a Monte Carlo simulation with the Excel spreadsheet and CrystalBall [registered sign] (CB) software was used to develop scenarios for uncertainty inputs. The economic and social criteria and indicators will not be further discussed in this paper. The framework of the study was originally carried out for 2005 data. Uncertainty of these parameters reflects directly on the outcome of LCA method. The LCI study was conducted in accordance with all requirements of the International Standards ISO 14040:2006. The use of stochastic model helps to characterize the uncertainties better, rather than pure analytical mathematical approach. In this case study only the following substances have been taken in account: hard coal, blast furnace gas, coke oven gas, lubricant oil, cadmium (Cd), carbon monoxide (CO), carbon dioxide (CO[2]), nitrogen dioxide (NO[2]), hydrochloric acid (HCl), sulfur dioxide (SO[2]) and lead (Pb).
PL
Celem artykułu jest przedstawienie stochastycznej analizy drugiego etapu oceny cyklu życia (LCA), jakim jest analiza inwentarzowa (LCI), dotyczącej procesu produkcji stali w kombinacie metalurgicznym ArcelorMittal Steel Poland S.A, w Krakowie. Kombinat obejmuje: koksownię, wielkie piece, aglomerownię, stalownie konwertorową (BOF), ciągłe odlewanie stali oraz walcownię gorącą. Kryteria ekonomiczne i socjalne nie są przedmiotem analizy w prezentowanym artykule. Analiza LCI w warunkach niepewności została przeprowadzona z zastosowaniem programu CrystalBall [zastrzeżony znak towarowy] (CB), współpracującym z arkuszem kalkulacyjnym Excel, w oparciu o symulację Monte Carlo. Dane wzięte do analizy dotyczą roku 2005. Analiza LCI została przeprowadzona zgodnie z normą ISO 14040:2006. Do analizy wybrano takie wielkości, jak: węgiel kamienny, gaz wielkopiecowy, gaz koksowniczy, oleje, kadm (Cr), tlenek węgla (CO), dwutlenek węgla (CO[2]), dwutlenek azotu (NO[2]), kwas solny (HCl), dwutlenek siarki (SO[2]) oraz ołów (Pb).
Rocznik
Strony
17--29
Opis fizyczny
Bibliogr. 35 poz.,Wykr., il.,
Twórcy
autor
  • Management Department, AGH Univeristy of Science and Technology
Bibliografia
  • [1] Mittal Steel Poland, Environmental Impact Report, 2007 b.
  • [2] Mittal Steel Poland (http://www.mittalsteel.com/Facilities/Europe/Mittal+Steel +Poland), 2007 a.
  • [3] Roy P., Nei D., Orikasa T., Xu Q., Okadome H., Nakamura N., Shiina T., A review of life cycle assessment (LCA) on some food products, Journal of Food Engineering 90, 2009, 1-10.
  • [4] Evans J.R., Olson D.L., Introduction in Simulation and Risk Analysis, Prentice Hall, New Jersey 1998.
  • [5] Kulczycka J., Henclik A., Ocena wpływu cyklu życia procesów wytwórczych na Wydziałach Surowcowych i Wytwarzania Stali Huty ArcelorMittal Steel Poland SA, Oddział w Krakowie, Polish Academy of Science, Kraków 2009.
  • [6] Commision Decision, Establishing guidelines for the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council, 2007 (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:229:0001:0085:EN:PDF).
  • [7] Fress N., Petersen E.H., Olgaard H., Reducing Uncertainty in LCI, Environmental, Project No. 862 2003, Danish Environmental Protection Agency, 2003.
  • [8] Goedkoop M., De Schryver A., Oele M., SimaPro 7.1 Tutorial. Pré Consultans, Report version 3.2, Netherlands 2003.
  • [9] Klopffer W., Hutzinger O., Life Cycle Assessment: State–of–the Art and research priorities, results of LCANET, A Concerted Action in the Environment and Climate Programme (DGXII), Vol. 1, LCA Documents, Eco-Informa Press 1997.
  • [10] Eco Indicator 99 method (http://www.pre.nl/eco-indicator99/default.htm).
  • [11] Hauschild M., Assessing Environmental Impacts in a LIFE-CYCLE Perspective, Environmental Science & Technology, vol. 39, No. 4, 2005, 905-912.
  • [12] Nadal M., Kumar V., Schumacher M., Domingo J.L., Applicability of a Neuroprobabilistic Integral Risk Index for the Environmental management of Polluted Areas: A Case Study, Risk Analysis, Vol. 28, No 2, 2008, 271-286.
  • [13] Spath P.L., Lane J.M., Mann M.K., Armos W.A., Update of Hydrogen from Biomass-Determination of the Delivered Cost of Hydrogen, 2000 (http://www.cbpredictor.com/articles/download/biomass_to_hydrogen.pdf).
  • [14] Sonnemann G., Castells F., Schumacher M., Integrated Life-Cycle And Risk Assessment For Industrial Processes, Lewis Publishers: Boca Raton, London, New York, Washington, D.C. 2004.
  • [15] Finley B., Proctor D., Scott P., Harrington N., Pasutenbach D,. Price P., Recommended distributions for exposure factors frequently used in health risk assessment, Risk Analysis 14, 1994, 533-553.
  • [16] Haimes Y.Y., Barry T., Lambert J.H., When and how can you specify a probability distribution when you don’t know how much?, Risk Analysis 14, 1994, 661-706.
  • [17] The Engineering index, American Society of Mechanical Engineers, The Engineering index inc., Michigan University, 1972, 2865.
  • [18] Meier M., Eco-Effciency Evaluation of Waste Gas Purifcation Systems in the Chemical Industry, LCA Documents, Vol. 2, Ecomed Publishers, Landsberg, Germany 1997.
  • [19] Frischknecht R., Bollens U., Bosshart S., et al., Okoinventare von Energiesystemen – Grundlagen fűr den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Okobilanzen fűr die Schweitz, 3rd ed. ETH Zűrich, Gruppe Energie-Stoffe_Umwelt, PSI Villingen, Sektion Ganzheitliche Systemanalysen, 1996.
  • [20] Weidema B., Wesnaes M.S., Data quality management for life-cycle inventories – an example of using data quality indicators, J. Cleaner Prod. 4 (3-4), 1996, 167-174.
  • [21] Rabl A., Spadaro J.V., Environmental damages and costs – an analysis of uncertainties, Environ. Int. 25(1), 1999, 29-46.
  • [22] STQ (Servei de Tecnologia Química), Análisis del ciclo de vida de la electricidad producida por la planta de incineración de residuos urbanos de Tarragona, technical report, Universitat Rovira i Virgili, Tarragona, Spain 1998.
  • [23] Hofstetter P., Perspective in Life Cycle Impact Assessment: A structured approach to combine models of the technosphere, ecosphere and valuesphere, Kluwer Academic Publishers: Boston, Dordrecht, London 1998.
  • [24] Bieda B., Tadeusiewicz R., Decision support systems based on the Life Cycle Inventory (LCI) for Municipal Solid Waste (MSW) Management under Uncertainty, International Transaction in Operational, 2008.
  • [25] Doka G., Hischier R., Waste Treatment and Assessment of Long-Term Emissions, Int. J LCA 10 (1), 2005, 77-84.
  • [26] Frischknecht R., Rebitzer G., The ecoinvent database system: a comprehensive web-based LCA database, J. Cleaner Prod. 13, 2005, 1337-1343.
  • [27] Yu S., Tao J., Simulation based life cycle assessment of airborne emissions of biomass-based ethanol products from different feedstock planting areas in China, J. Cleaner Prod. 17, 2009, 501-506.
  • [28] Dowaki K., Genchi Y., Life Cycle Inventory analysis on Bio-DME and/or Bio-MeOH products through BLUE tower process, DOI 10.1007/s1367-009-0092-6.
  • [29] Hanssen O.J., Asbjornsen A.A., Statistical properties of emission data in life-cycle assessment, J. Cleaner Prod. 4, 1996, 149-157.
  • [30] Ros M., Unsicherheit und Fuzzyiness in ökologischen Bewertungen – Orientierungen zu einer robusten Praxis der Ökobilanzierung, PhD Thesis, ETH Zürich. Switzerland 1998.
  • [31] Maurice B., Frischknecht R., Coehlo-Schwitz V., Hungerbühler K., Uncertainty analysis in life-cycle inventory – application to the production of electricity with French coal power plants, J. Cleaner Prod. 8, 2000, 95-108.
  • [32] Benetto E., Dujet C., Rousseaux P., Possibility Theory: A New Approach to Uncertainty Analysis?, Int. J LCA 11, 2006, 114-116.
  • [33] Uncertainty Analysis in Ecological Risk Assessment, War ren-Hicks W., Moore D.R. (eds). A Special Publication of SETAC, SETACPRESS, 1995.
  • [34] Scharnhorts W., Köhler A., Rebitzer G., Hischier R., Jolliet O., Progress in Modern Life Cycle Assessment: Practice and Research, Int. J LCA 9, 2004, 143-151.
  • [35] Sate S., Seizo K., Naoki M., Akira N., Tanongkiat K., Anugerah W., LCA-ETS Evaluation for GHGs of Power Generation Plants in Thailand, 2005 (http://www.etseq.urv.es/aga/lcm2005/99_pdf/Documentos/AE12-4.pdf).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3546-3498
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.