PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital Concentration-Distribution Models - tools for a describing heterogeneity of the hybridized magmatic mass as reflected in elemental concentration of growing crystal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Raster digital models (digital concentration-distribution models - DC-DMs) as interpolations of geochemical data are proposed as a new tool to depict the crystal growth mechanism in a magmatic environment. The Natural Neighbour method is proposed for interpolation of Electron Microprobe Analysis (EMPA) data; the Natural Neighbour method and Kriging method are proposed for interpolating data collected by the LA-ICP-MS method. The crystal growth texture was analysed with the application of DC-DM derivatives: 3D surface models, shaded relief images, aspect and slope maps. The magmatic mass properties were depicted with the application of solid models. Correlation between the distributions of two elements on a single crystal transect was made by operations on the obtained raster DC-DMs. The methodology presented is a universal one but it seems to be significant for the depiction of magma mixing processes and the heterogeneity of the magmatic mass.
Rocznik
Strony
129--141
Opis fizyczny
Bibliogr. 32 poz.,
Twórcy
autor
autor
  • Institute of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, m.smigielski@uw.edu.pl
Bibliografia
  • 1. Chiles, J.P. and Delfiner, P. 1999. Geostatistics: Modeling spatial uncertainty, 350 p. Wiley & Sons; New York.
  • 2. Cooper, G.R.J. 2003. Feature detection using sun shading. Computers & Geosciences, 29, 941–948.
  • 3. Cressie, N.A.C. 1990. The origins of Kriging. Mathematical Geology, 22, 239–252.
  • 4. Draper, N.R. and Smith, H. 1998. Applied regression analysis. Third Edition. John Wiley & Sons, Inc.; New York.
  • 5. Domonik, A., Słaby, E. and Śmigielski, M. 2010. The Hurst Exponent as The Tool for Description of Magma Field Heterogeneity Reflected in The Geochemistry of Growing Crystals. Acta Geologica Polonica, 60, 437–443.
  • 6. Fleming, M. D. and Hoffer, R. M. 1979. Machine processing of Landsat MSS data and LARS Technical Report 062879.
  • 7. Laboratory for Applications of Remote Sensing, Purdue University; West Lafayette, USA.
  • 8. Fourcade, S. and Allegre, C.J. 1981. Trace element behavior in granite genesis: a case study. The calc-alkaline plutonic association from Querigut complex (Pyrenees, France). Contributions to Mineralogy and Petrology, 76, 177–195.
  • 9. Gagnevin, D., Daly, J.S., Poli, G. and Morgan, D. 2005a. Microchemical and Sr isotopic investigation of zoned K-feldspar megacrysts: insights into the petrogenesis of a granitic system and disequilibrium crystal growth. Journal of Petrology, 46, 1689–1724.
  • 10. Gagnevin, D., Daly, J.S., Waight, T., Morgan, D. and Poli, G. 2005b. Pb isotopic zoning of K-feldspar megacrysts determined by laser ablation multiple-collector ICP-MS: insights into granite petrogenesis. Geochimica and Cosmochimica Acta, 69, 1899–1915.
  • 11. Ginibre, C., Wörner, G. and Kronz, A. 2002. Minor- and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contribution to Mineralogy and Petrology, 143, 300–315.
  • 12. Ginibre, C., Wörner, G. and Kronz, A. 2004. Structure and Dynamics of the Laacher See magma chamber (Eifel, Germany) from major and trace element zoning in sanidine: a cathodoluminescence and electron microprobe study. Journal of Petrology, 45, 2197–2223.
  • 13. Ginibre, C., Wörner, G. and Kronz, A. 2007. Crystal zoning as an archive for magma evolution. Elements, 3, 261–266.
  • 14. Green, P.J. and Silverman, B. W. 1994. Nonparametric Regression and Generalized Linear Models. Chapman and Hall; London.
  • 15. Hoskin, P.W.O. 2000. Patterns of chaos: Fractal statistics and the oscillatory chemistry of zircon. Geochimica et Cosmochimica Acta, 64, 1905–23.
  • 16. Hurst, H.E. 1951. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770–808.
  • 17. Jones, K.H. 1998. A Comparison of algorithms used to compute hill slope as a property of the DEM. Computers & Geosciences, 24, 315–323.
  • 18. Konon, A. and Śmigielski, M. 2006. DEM-based structural mapping; examples from the Holy Cross Mountains and the Outer Carpathians, Poland. Acta Geologica Polonica, 56, 1–16.
  • 19. Pelton, C. 1987. A computer program for hill-shading digital topographic data sets. Computers & Geosciences, 13, 545–548.
  • 20. Peters, E.E. 1997. Teoria chaosu a rynki kapitałowe. Nowe spojrzenie na cykle, ceny i ryzyko. WIG-Press; Warszawa.
  • 21. Sibson, R. 1981. A Brief Description of Natural Neighbour Interpolation. In: V. Barnett (Ed.), Interpreting Multivariate Data. John Wiley and Sons, New York, p. 21–36.
  • 22. Słaby, E. and Götze, J. 2004. Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modelling – a case study from the Karkonosze pluton (SW Poland). Mineralogical Magazine,64, 541–557.
  • 23. Słaby, E., Galbarczyk-Gąsiorowska, L., Seltmann, R. and Műller, A. 2007a. Alkali feldspar megacryst growth: geochemical modelling. Mineralogy and Petrology, 68, 1–29.
  • 24. Słaby, E., Götze, J., Wörner, G., Simon, K., Wrzalik, R., Śmigielski, M. 2008. K-feldspar phenocrysts in microgranular magmatic enclaves: A cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. lithos, 105, 85–97.
  • 25. Słaby, E. and Martin, H. 2008. Mafic and felsic magma interactions in granites: the Hercynian Karkonosze pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49, 353–391.
  • 26. Słaby, E., Seltmann, R., Kober, B., Műller, A., Galbarczyk-Gąsiorowska, L. and Jeffries, T. 2007b. LREE distribution patterns in zoned alkali feldspar megacrysts – implication for parental melt composition. Mineralogical Magazine, 71, 193–217.
  • 27. Słaby, E., Śmigielski, M., Śmigielski, T., Domonik, A., Simon, K. and Kronz, A. 2011. Chaotic three-dimensional distribution of Ba, Rb, Sr in feldspar megacrysts grown in an open magmatic system. Contribution to Mineralogy and Petrology, 162, 889–1113.
  • 28. Słaby, E., Martin, H., Hamada, M., Śmigielski, M., Domonik, A., Götze, J., Hoefs, J., Hałas, J., Simon, K., Devidal, J.-L., Moyen, J.-F. and Jayananda, M. 2012. Evidence in Archaean Alkali Feldspar Megacrysts for High-Temperature Interaction with Mantle Fluids. Journal of Petrology, 53, 67–98.
  • 29. Voronoi, G. 1907. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik, 133, 97–178.
  • 30. West, B.J. 1990. Fractal physiology and chaos in medicine. World Scientific; Singapore.
  • 31. Yang Z.Y. and Lo S. C. 1997. An Index for Describing the Anisotropy of Joint Surfaces. International Journal of Rock Mechanics and Mining Sciences, 34, 1031–1044.
  • 32. Yoeli, P. 1965. Analytical hill shading. Surveying and Mapping, 25, 573–579.
  • 33. Zhou, Q. and Liu, X. 2004. Analysis of errors of derived slope and aspect related to DEM data properties. Computers & Geosciences, 30, 369–378.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3453-3069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.