PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie automatów komórkowych do numerycznej symulacji korozji betonu pod obciążeniem

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Application of cellular automata simulation to concrete corrosion damage under loading /
Języki publikacji
PL
Abstrakty
PL
Przedstawiony model korozji betonu uwzględnia synergistyczne oddziaływanie obciążenia i degradacji chemicznej. Wykazano efektywność zastosowania automatów komórkowych do symulacji sprzężonych przepływów dyfuzyjnych przy zmiennej przepuszczalności ośrodka.
EN
Multiscale simulation by the cellular automata to diffusion in porous material has been applied. Multilevel synergic effect of loading and chemical activity has been considered. The effective stress has been employed for both equilibrium and evolution equations.
Rocznik
Strony
147--158
Opis fizyczny
Bibliogr. 34 poz.,Rys., wz., wykr.,
Twórcy
autor
  • Instytut Mechaniki Budowli, Wydział Inżynierii Lądowej, Politechnika Krakowska
Bibliografia
  • [1] Glasser F.P., Marchand J., Samson E., Durability of concrete – Degradation phenomena involving detrimental chemical reactions, Cement and Concrete Research, 38, 2008, 226-246.
  • [2] Xi Y.B., Willam K., Frangopol D.M., Multiscale modelling of interactive diffusion processes in concrete, Journal of. Engineering Mechanics, 126, 2000, 3, 258-265.
  • [3] Kamali S., Gérard B., Moranville M., Modeling the leaching kinetics of cement-based materials – influence of materials and environment, Cement & Concrete Composites, 25, 2003, 451-458.
  • [4] Coussy O., Poromechanics, John Wiley & Sons Ltd, 2004, 283.
  • [5] Nägele E., New and powerful method for the evaluation of multiparameter corrosion tests, Cement and Concrete Research, 25, 1995, 6, 1208-1217.
  • [6] Samson E., Marchand J., Beaudoin J.J., Describing ion diffusion mechanisms in cement-based materials using the homogenization technique, Cement and Concrete Research, 29, 1999, 1341-1345.
  • [7] Ababneh A., Benboudjema F., Xi J., Chloride penetration in nonsaturated concrete, Journal of Materials in Civil Engineering, 15, 2003, 2, 183-191.
  • [8] Sercombe J., Viadal R., Gallé C., Adenot F., Experimental study of gas diffusion in cement paste, Cement and Concrete Research, 37, 2007, 579-588.
  • [9] Ismail M., Touni A., Francois R., Gagne R., Effect of crack opening on the local diffusion of chloride in inert materials, Cement and Concrete Research, 34, 2003, 711-716.
  • [10] Ishida T., Maekawa K., Kishi T., Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history, Cement and Concrete Research, 37, 2007, 565-578.
  • [11] Scherer G.W., Valenza J.J., Simmons G., New methods to measure liquid permeability in porous materials, Cement and Concrete Research, 37, 2007, 386-397.
  • [12] Wong H.S., Buenfeld N.R., Head M.K., Estimating transport properties of mortars using image analysis on backscattered electron images, Cement and Concrete Research, 36, 2006, 1556-1566.
  • [13] Yang C.C., On the relationship between pore structure and chloride diffusivity from accelerated chloride migration test in cement-based materials, Cement and Concrete Research, 36, 2006, 1304-1311.
  • [14] Ye G., Percolation of capillary pores in hardening cement pastes, Cement and Concrete Research, 35, 2005, 167-176.
  • [15] Schneider U., Chen S.-W., Deterioration of high-performance concrete subjected to attack by the combination of ammonium nitrate solution and flexure stress, Cement and Concrete Research, 35, 2005, 1705-1713.
  • [16] Schneider U., Chen S.-W., The chemomechanical effect and the mechanochemical effect on high-performance concrete subjected to stress corrosion, Cement and Concrete Research, 28, 1998, 509-522.
  • [17] Choinska M., Khelidj A., Chatzigeorgiou G., Pijaudier-Cabot G., Effects and interactions of temperature and stress-level related damage on permeability of concrete, Cement and Concrete Research, 37, 2007, 79-88.
  • [18] Saito M., Chloride permeability of concrete under static and repeated compressive loading, Cement and Concrete Research, 25, 1995, 803-808.
  • [19] Lee Y., Yi S.-T., Kim M.-S., Kim J.-K., Evaluation of a basic creep model with respect to autogenous shrinkage, Cement and Concrete Research, 36, 2006, 1268-1278.
  • [20] Zaborski A., Concrete elements durability in aggressive environments: cellular automata simulation, in: Environmental effects on buildings, structures, materials and people, Lublin Univ. of Techn., Lublin 2007, 303-312.
  • [21] Samson E., Marchand J., Modeling the transport of ions in unsaturated cement-based materials, Computers and Structures, 85, 2007, 1740-1756.
  • [22] Saetta A.V., Vitaliani R.V., Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures. Part I: Theoretical formulation, Cement and Concrete Research, 34, 2004, 571-579.
  • [23] Saetta A.V., Scotta R., Vitaliani R., Mechanical behavior of concrete under physical-chemical attacks, Journal of Engineering Mechanics, 124, 1998, 10, 1100-1109.
  • [24] Meschke G., Grasberger S., Numerical modeling of coupled hygromechanical degradation of cementitious materials, Journal of Engineering Mechanics, 129, 2003, 4, 383-392.
  • [25] Bangert F., Grasberger S., Kuhl D., Meschke G., Environmentally induced deterioration of concrete: physical motivation and numerical modeling, Engineering Fracture Mechanics, 70, 2003, 891-910.
  • [26] Nguyen V.H., Nedjar B., Torrenti J.-M., Chemo-mechanical coupling behavior of leached concrete. Part II: Modeling, Nuclear Engineering and Design, 237, 2007, 2090-2097.
  • [27] Fafard M., Boudjelal M.T., Bissonnette B., Cloutier A., Three-dimensional viscoelastic model with nonconstant coefficients, Journal of Engineering Mechanics, 127, 2001, 8, 808-815.
  • [28] Kuhl D., Bangert F., Meschke G., Coupled chemo-mechanical deterioration of cementitious materials. Part I: Modeling, Int. Journal of Solids and Structures, 41, 2004, 15-40.
  • [29] Kattan P.I., Voyiadjis G.Z., Decomposition of Damage Tensor in Continuum Damage Mechanics, Journal of Engineering Mechanics, 129, 2001, 9, 940-944.
  • [30] Rothman D.H., Zaleski S., Lattice-gas cellular automata. Simple models of complex hydrodynamics, Cambridge University Press, 1997, 297.
  • [31] Kutay M.E., Aydilek A.H., Masad E., Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials, Computer and Geotechnics, 33, 2006, 381-395.
  • [32] Biondini F., Bontempi F., Frangopol D.M., Malerba P.G., Cellular automata approach to durability analysis of concrete structures in aggressive environments, Journal of Structural Engineering, 130, 2004, 11, 1724-1737.
  • [33] Zaborski A., Corrosion of reinforced concrete due to stress-assisted diffusion, Archive of Civil Engineering,41, 1995, 447-460.
  • [34] Mazars J., Pijaudier-Cabot G., From damage to fracture mechanics and conversely: a combined approach, Int. Journal of Solids and Structures, 33, 1996, 20-22, 3327-3342.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3304-2890
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.