PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Właściwości fizykochemiczne ortofosforanów wapnia istotnych dla medycyny - TCP i HAp

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Phisicochemical properties of calcium orthophosphate significant for medicine - TCP and HAp
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono charakterystykę ortofosforanów wapnia ważnych ze względu na możliwości zastosowania w medycynie i stomatologii. Omówiono charakterystykę fizykochemiczną dwóch najistotniej szych fosforanów wapnia - hydroksyapatytu i fosforanu (V) wapnia -TCP.
EN
In this paper characteristic of calcium phosphates important for the sake of possibilities of medical and dental applications is presented. It has been discussed physicochemical characteristic of two the most important calcium phosphates - hydroxyapatite and tricalcium phosphate - TCP.
Rocznik
Strony
309--322
Opis fizyczny
Bibliogr. 60 poz.,Il., wz., wykr., tab
Twórcy
autor
  • Instytut Chemii i Technologii Nieorganicznej, Wydział Inżynierii i Technologii Chemicznej, Politechnika Krakowska
Bibliografia
  • [1] Ślósarczyk A., Bioceramika hydroksyapatytowa, Biuletyn Ceramiczny nr 13 Ceramika 51, Polskie Towarzystwo Ceramiczne, Kraków 1997.
  • [2] Błażewicz S., Stoch L. (red.), Biocybernetyka i inżynieria biomedyczna 2000, Tom 4 – Biomateriały, Akademicka Ofcyna Wydawnicza EXIT, Warszawa 2003.
  • [3] Orlovskii V.P., Komlev V.S., Barinov S.M., Hydroxyapatite and Hydroxyapatite-Based Ceramics, Inorganic Materials (38) 10, 2002, 973-984.
  • [4] Li Y., Weng W., Tam K.Ch., Novel highly biodegradable biphasic tricalcium phosphates composed of a-tricalcium phosphate and β-tricalcium phosphate, Acta Biomaterialia 3, 2007, 251-254.
  • [5] Pena J., Vallet-Regı M., Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique, Journal of the European Ceramic Society 23, 2003, 1687-1696.
  • [6] Manjubala I., Sivakumar M., In-situ synthesis of biphasic calcium phosphate ceramics using microwave irradiation, Materials Chemistry and Physics 71, 2001, 272-278.
  • [7] Murugan R., Ramakrishna S., Coupling of therapeutic molecules onto surface modifed coralline hydroxyapatite, Biomaterials 25, 2004, 3073-3080.
  • [8] Vallet-Regı M., Gonzalez-Calbet J.M., Calcium phosphates as substitution of bone tissues, Progress in Solid State Chemistry 32, 2004, 1-31.
  • [9] Ślosarczyk A., Piekarczyk J., Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate, Ceramics International 25, 1999, 561-565.
  • [10] Krupa-Żuczek K., Otrzymywanie kwasu fosforowego z półproduktów kostnych z przemysłu mięsnego, praca doktorska, Politechnika Krakowska 2007.
  • [11] Lin F.H., Liao Ch.J., Chen K.S., Sun J.S., Lin Ch.P., Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water, Biomaterials 22, 2001, 2981-2992.
  • [12] Kalita S.J., Bhardwaj A., Bhatt H.A., Nanocrystalline calcium phosphate ceramics in biomedical engineering, Materials Science and Engineering C 27, 2007, 441-449.
  • [13] Lin F.H., Liao Ch.J., Chen K.S., Sun J.S., Preparation of high temperature stabilized β-tricalcium phosphateby heating defcient hydroxyapatite with Na4P2O7 x 10H2O addition, Biomaterials 19, 1998, 1101-1107.
  • [14] Liu Ch., Shen W., Chen J., Solution property of calcium phosphate cement hardening body, Materials Chemistry and Physics 58, 1999, 78-83.
  • [15] Jiang D., Premachandra G.S., Johnston C., Hem S.L., Structure and adsorption properties of commercial calcium phosphate adjuvant, Vaccine 23, 2004, 693-698.
  • [16] Liu P., Tao J., Cai Y., Pan H., Xu X., Tang R., Role of fetal bovine serum in the prevention of calcifcation in biologicalfuids, Journal of Crystal Growth 310, 2008, 4672-467.
  • [17] Yoshida K., Kobayashi M., Hyuga H., Kondo N., Kita H., Hashimoto K., Toda Y., Reaction sintering of β-tricalcium phosphates and their mechanical properties, Journal of the European Ceramic Society 27, 2007, 3215-3220.
  • [18] Camire C.L., Gbureck U., Hirsiger W., Bohner M., Correlating crystallinity and reactivity in an a-tricalcium phosphate, Biomaterials 26, 2005, 2787-2794.
  • [19] Destainville A., Champion E., Bernache-Assollant D., Laborde E., Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate, Materials Chemistry and Physics 80, 2003, 269-277.
  • [20] Bow J.S., Liou Sz.Ch., Chen S.Y., Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate, Biomaterials 25, 2004, 3155-3161.
  • [21] Yashima M., Sakai A., High-temperature neutron powder diffraction study of the structural phase transition between α and α’ phases in tricalcium phosphate Ca3(PO4)2, Chemical Physics Letters 372, 2003, 779-783.
  • [22] http://geology.com/minerals/apatite.shtml.
  • [23] http://www.mindat.org/min-1992.html.
  • [24] Mobasherpour I., Soulati Heshajin M., Kazemzadeh A., Zakeri M., Synthesis of nanocrystalline hydroxyapatite by using precipitation method, Journal of Alloys and Compounds 430, 2007, 330-333.
  • [25] Szymański A. (red.), Biomineralizacja i biomateriały, PWN, Warszawa 1991.
  • [26] Barros L.A.F., Ferreira E.E., Peres A.E.C., Floatability of apatites and gangue minerals of an igneous phosphate ore, Minerals Engineering 21, 2008, 994-999.
  • [27] Peck W.H., Tumpane K.P., Low carbon isotope ratios in apatite: An unreliable biomarker in igneous and metamorphic rocks, Chemical Geology 245, 2007, 305-314.
  • [28] Rønsbo J.G., Apatite in the Ilímaussaq alkaline complex: Occurrence, donation and compositional variation, Lithos 106, 2008, 71-82.
  • [29] Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I., Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type, Journal of Geochemical Exploration 76, 2002, 45-69.
  • [30] Yoshikawa H., Myoui A., Bone tissue engineering with porous hydroxyapatite ceramics, Journal of Artifcial Organs 8, 2005,131-136.
  • [31] Parekh B., Joshi M., Vaidya A., Characterization and inhibitive study of gel-grown hydroxyapatite crystals at physiological temperature, Journal of Crystal Growth 310, 2008, 1749-1753.
  • [32] Święcicki Z., Bioceramika dla ortopedii, Instytut Podstawowych Problemów Techniki PAN, Wyd. Spółdzielcze Sp. z.o.o., Warszawa 1992.
  • [33] http://www.webmineral.com.
  • [34] Rajabi-Zamani A.H., Behnamghader A., Kazemzadeh A., Synthesis of nanocrystalline carbonated hydroxyapatite powder via nonalkoxide sol-gel method, Materials Science and Engineering C, 28, 2008, 1326-1329.
  • [35] Shu C., Yanwei W., Hong L., Zhengzheng P., Kangde Y., Synthesis of carbonated hydroxyapatite nanofbers by mechanochemical methods, Ceramics International 31, 2005, 135-138.
  • [36] Suchanek W.L., Byrappa K., Shuk P., Riman R.E., Janas V.F., Ten-Huisen K.S., Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method, Biomaterials 25, 2004, 4647-4657.
  • [37] Shellis R.P., Wilson R.M., Apparent solubility distributions of hydroxyapatite and enamel apatite, Journal of Colloid and Interface Science 278, 2004, 325-332.
  • [38] Landi E., Tampieri A., Mattioli-Belmonte M., Celotti G., Sandri M., Gigante A., Fava P., Biagini G., Biomimetic Mg- and Mg,CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour, Journal of the European Ceramic Society 26, 2006, 2593-2601.
  • [39] Yasukawa A., Kidokoro M., Kandori K., Ishikawa T., Preparation and Characterization of Barium-Strontium Hydroxyapatites, Journal of Colloid and Interface Science 191, 1997, 407-415.
  • [40] Medvecky L., Stulajterova R., Parilak L., Trpcevska J., Durisin J., Barinov S.M., Infuence of manganese on stability and particle growth of hydroxyapatite in simulated body fuid, Colloids and Surfaces A: Physicochemical nad Engineering Aspects 281, 2006, 221-229.
  • [41] Wojtyczek Ł., Anatomia układu ruchu człowieka z elementami anatomii czynnościowej, Państwowa Wyższa Szkoła Zawodowa, Krosno 2004.
  • [42] Brown W.E., Chow L.C., Chemical properties of bone mineral, Annual Reiew Materials Science 6, 1976, 213-236.
  • [43] Dorozhkin S.V., Mechanism of solid-state conversion of non-stoichiometric hydroxyapatite to diphase calcium phosphate, Russian Chemical Bulletin, International Edition 52 (11), 2003, 2369-2375.
  • [44] Bouhaouss A., Laghzizil A., Bensaoud A., Ferhat M., Lorent G., Livage J., Mechanism of ionic conduction in oxy and hydroxyapatite structures, International Journal of Inorganic Materials 3, 2001, 743-747.
  • [45] Fleet M.E., Liu X., Local structure of channel ions in carbonate apatite, Biomaterials 26, 2005, 7548-7554.
  • [46] Ito A., Nakamura S., Aoki H., Akao M., Teraoka K., Tsutsumi S., Onuma K., Tateishi T., Hydrotermal growth of carbonate-containing hydroxyapatite single crystals, Journal of Crystal Growth 163, 1996, 311-317.
  • [47] Descamps M., Hornez J.C., Leriche A., Effects of powder stoichiometry on the sintering of β-tricalcium phosphate, Journal of the European Ceramic Society 27, 2007, 2401-2406.
  • [48] Morgan H., Wilson R.M., Elliott J.C., Dowker S.E.P., Anderson P., Preparation and characterisation of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate, Biomaterials 21, 2000, 617-627.
  • [49] Raynaud S., Champion E., Lafon J.P., Bernache-Assollant D., Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics, Biomaterials 23, 2002, 1081-1089.
  • [50] Kalita S.J., Bhatt H.A., Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization, Materials Science and Engineering C 27, 2007, 837-848.
  • [51] Kumta P.N., Sfeir Ch., Lee D.H., Olton D., Choi D., Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization, Acta Biomaterialia 1, 2005, 65-83.
  • [52] Wopenka B., Pasteris J.D., A mineralogical perspective on the apatite in bone, Materials Science and Engineering C 25, 2005, 131-143.
  • [53] Qu H., Wei M., The effect of fuoride contents in fuoridated hydroxyapatite on osteoblast behavior, Acta Biomaterialia 2, 2006, 113-119.
  • [54] Knychalska-Karwan Z., Ślósarczyk A., Hydroksyapatyt w stomatologii, Krakmedia, Kraków, 1994.
  • [55] Kothapalli Ch., Wei M., Vasiliev A., Shaw M.T., Infuence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite, Acta Materialia 52, 2004, 5655-5663.
  • [56] Dyshlovenko S., Pateyron B., Pawlowski L., Murano D., Numerical simulation of hydroxyapatite powder behaviour in plasma jet, Surface and Coatings Technology 179, 2004, 110-117.
  • [57] Li X., Ito A., Yu S., Wang X., Le Geros R.Z., Solubility of Mg-containing β-tricalcium phosphate at 25°C, Acta Biomaterialia 5, 2009, 508-517.
  • [58] Peters F., Schwarz K., Epple M., The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis, Thermochimica Acta 361, 2000, 131-138.
  • [59] Bernache-Assollant D., Ababou A., Champion E., Heughebaert M., Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 I. Calcination and particle growth, Journal of the European Ceramic Society 23, 2003, 229-241.
  • [60] Okazaki M., Tohda H., Yanagisawa T., Taira M., Takahashi, J., Differences in solubility of two types of heterogeneous fuoridated hydroxyapatites, Biomaterials 19, 1998, 611-616.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3304-2873
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.