PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dissolved-recrystallized zircon from mariupolite in the Mariupol Massif, Priazovje (SE Ukraine)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Zircon in mariupolite from the alkaline Mariupol Massif has a relatively simple, monotonous composition with only some variation in its REE2O3 and ThO2 content, i.e., 0.00-1.55 and 0.00-0.34 wt. %, respectively. It contains numerous inclusions such as albite, lepidomelane, aegirine, K-feldspars, pyrochlore, paristite and bastnńsite-(Ce). The crystallization of the inclusions (except for REE-bearing carbonates) was contemporaneous with the formation of the zircon crystals. These inclusions were enclosed by faster growing zircons. The SEM-CL images of the zircon are typical of crystals with signs of local thermal recrystallization, i.e., primary oscillatory zoning along the grain margins and secondary irregular patchy zoning in the interior. Its complex internal texture most probably formed as a result of a coupled dissolution-recrystallization process during the late magmatic or post-magmatic stage of the cooling of the host rocks. The abundant micropores could have originated as a result of leaching of the zircon. The recrystallization process definitely disturbed the concentric oscillatory zoning pattern characteristic of magmatic zircon.
Rocznik
Strony
277--288
Opis fizyczny
Bibliogr. 38 poz.,Rys., tab.,
Twórcy
autor
autor
  • Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH . University of Science and Technology, Kraków PL-30-059, Mickiewicza 30, Poland, dumanska@uci.agh.edu.pl
Bibliografia
  • 1. Belousova, E.A., Griffin, W.L. and Pearson, N.J. 1998. Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineralogical Magazine, 62 (3), 355–366.
  • 2. Belousova, E.A., Griffin, W.L., O’reilly, Suzanne Y. and Fisher, B.I. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, 602–622.
  • 3. Corfu, F., Hanchar, J.M., Hoskin, P.W.O. and Kinny, P.D. 2003. Atlas of zircon texture. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, 51 (1), 469–500.
  • 4. Deer, W.A., Howie, R.A. and Zussmann, J. 1992. An introduction to the rock forming minerals, 696 pp. Pearson Education Limited; Essex. [2nd Edition]
  • 5. Donskoy, A.N. 1982. The nepheline complex of alkaline Oktyabr’skii massif, 150 pp. The Ukrainian Academy of Science; Kiev. [In Ukrainian]
  • 6. Dumańska-Słowik M., Baranov P., Heflik W., Natkaniec-Nowak l., Shevchenko S., Tsotsko L.I. 2011. Mariupolite from the Oktyabrsky Massif (SE Ukraine) – a less known rock in the gemstone trade, Zeitschrift der Deutschen Gemmologischen Gesellschaft 60 (1-2), 37–48.
  • 7. Gaft, M., Reisfeld, R. and Panczer, G. 2005. Luminescence Spectroscopy of Minerals and Materials, 356 pp. Springer-Verlag Berlin; Heidelberg.
  • 8. Gagnevin, D., Daly, J.S. and Kronz, A. 2009. Zircon texture and chemical composition as a guide to magmatic process and mixing in a granitic environment and coeval volcanic system. Contributions to Mineralogy and Petrology, 159 (4), 579–596.
  • 9. Geisler, T. and Schleicher, H. 2000. Improved U-Th total Pb dating of zircons by electron microprobe using a simple new background modelling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon. Chemical Geology, 163, 269–285.
  • 10. Geisler, T., Rashwan, A.A., Rahn, M.K., Poller, U., Zwingmann, H., Pidgeon, R.T., Schleicher, H. and Tomaschenk, F. 2003. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine 67 (3), 485–508.
  • 11. Geisler, T., Schaltegger, U. and Tomaschek, F. 2007. Reequilibration of zircon in aqueous fluids and melts. Elements, 3 (1), 43–50.
  • 12. Gorobets, B.S. and Rogojine, A.A. 2002. Luminescent spectra of minerals, 300 pp. Moscow.
  • 13. Götze, J. 2000. Cathodoluminescence microscopy and spectroscopy in applied mineralogy, pp. 1–128. Geowissenschaften C 485. Tech. Univ. Bergakad. Freiberg.
  • 14. Hanchar, J.M. and Miller, C.F. 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implication for interpretation of complex crustal histories. Chemical Geology, 110, 1–13.
  • 15. Hinton, R.W. and Upton, B.G.J. 1991. The chemistry of zircon: Variation within and between large crystals from syenite and alkali basalt xenoliths. Geochimica et Cosmochimica Acta, 55, 3287–3302.
  • 16. Hoskin, P.W.O. 2005. Trace-element composition of hydrothermal zircons and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69 (3), 637–648.
  • 17. Hoskin, P.W.O. and Schaltegger, U. 1993. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27–62.
  • 18. Kempe, U., Gruner, T., Nasdala, L.I. and Wolf, D. 2000. Relevance of cathodoluminescence for the interpretation of U–Pb zircon ages, with an example of an application to a study of zircons from the Saxonian Granulite Complex, Germany. In: M. Pagel, V. Barbin, P. Blanc, D. Ohnenstetter (Eds), Cathodoluminescence in Geosciences, pp. 425–456.
  • 19. Krivdik, S.G. and Tkachuk, V.I. 1988. Geochemical and petrological characterization of the rocks from the alkaline Oktyabr’skii Massif (Ukraina). Geochimija, 4, 362–371. [In Russian]
  • 20. Krivdik, S.G., Nivin, V.A., Kul’chitskaya, A.A., Voznak, D.K., kalinichenko, A.M., Zagnitko, V.N. and Dubyna, A.V. 2007. Hydrocarbons and other volatile components in alkaline rocks from the Ukrainian Shield and Kola Penisula. Geochemistry International, 45 (3), 270–294.
  • 21. Mariano, A.N. 1978. The application of cathodoluminescence for carbonatite exploration and characterization. In: C.J. Braga (Ed.), Proceedings of the International Symposium on Carbonatites, pp. 39–57.
  • 22. Marshall, D.J. 1988. Cathodoluminescence of Geological Materials. Unwin Hyman, p. 146.
  • 23. Morozewicz, J. 1902. Über Mariupolit, ein extremes Glied der Elaeolithsyenite. Tschermaks Mineralogische und Petrographische Mitteilungen, 21, 238–246.
  • 24. Morozewicz, J. 1929. Mariupolite and its relatives. Prace Polskiego Instytutu Geologicznego 2 (3), p. 130. [In Polish]
  • 25. Murali, A.V., Parthasarathy, T.M., Mahadevan, T.M. and Sankar, Das M. 1983. Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments – A case study on Indian zircons. Geochimica et Cosmochimica Acta, 47, 2047–2052.
  • 26. Nasdala, l., Zhang, M., Kempe, U., Panczer, G., Gaft, M., Andrut, M. and Plötze. M. 2003. Spectroscopic methods applied to zircon. In: Hanchar J. and Hoskin P. (Eds), Zircon, Reviews in Mineralogy and Geochemistry, 53, 427–466.
  • 27. Pouchou, I.l. and Pichoir, F. 1985. “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. In: I.T. Armstrong (Ed.), Microbeam Analysis, pp. 104–106. San Francisco Press; San Francisco.
  • 28. Rubatto, D. and Gebauer, D. 2000. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the Western Alps. In: M. Pagel, V. Barbin, P. Blanc, D. Ohnenstetter (Eds), Cathodoluminescence in Geosciences, Springer, Berlin–Heidelberg 373–400.
  • 29. Rubatto, D., Müntener, O., Barnhoorn, A. and Gregory, C. 2008. Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). American Mineralogist, 93, 1519–1529.
  • 30. Rubin, J.N., Henry, C.D. and Price, J.G. 1989. Hydrothermal zircons and zircon growths, Sierra Blanca Peaks, Texas. American Mineralogist,74, 865–869.
  • 31. Sharygin, V.V., Krivdik, S.G., Pospelova, l.N. and Dubina A.V. 2009. Zn-kupletskite and hendricksite in the agpaitic phonolites of the Oktyabrskii Massif, Azov region, Ukraine. Doklady Earth Sciences, 425 (3), 499–504.
  • 32. Solodov, N.A. 1985. The mineralo-genesis of rare metal formations, 225 pp. Niedra. Moscow. [In Ukrainian]
  • 33. Tichonienkova, R.J, osokin, J.D., Gonzjejev, A.A. 1967. Rare-metals metasomatites of alkaline massives, Nauka, Moscow, 196 pp. [In Ukrainian]
  • 34. Tomaschek, F., Kennedy, A.K., Villa, I.M., lagos, M. and Ballhaus, C. 2003. Zircon from Syros, Cyclades, Greece - recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology, 44 (11), 1977–2002.
  • 35. Vavra, G., Schmid, R. and Gabauer, D. 1999. Internal morphology, habit and U-Pb microanalysis of amphibolitesto-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134, 380–404.
  • 36. Volkova, T.P. 2000. The genesis and ore mineralization of alkaline rocks from the Oktyabr’skii Massif. Sbornik nauchnykh trudov, 4, 9–10. [In Ukrainian]
  • 37. Volkova, T.P. 2001. The productivity criterion of REE and ore mineralization within rocks of the Oktyabr’skii Massif. Naukovi praci DonDTU, 36, 63–69. [In Ukrainian]
  • 38. Xie, l., Wang, R., Chen, X., Qiu, J. and Wang, D. 2005. Thrich zircon from peralkaline A-type granite: mineralogical features and petrological implications. Chinese Science Bulletin, 50, 809–817.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3303-2763
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.