PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bumblbebees (Bombidae) along pollution gradient - heavy metal accumulation, species diversity, and Nosema bombi infection level

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pollinator crisis (Kearns et al. 1998) and its possible causes has become a worldwide issue during the last two decades. Although pollution is among the possible causes of the widely observed pollinator loss, it is still poorly investigated and no studies are known, so far to test the effects of heavy metal contamination in bumblebees (Bombidae) - the second most important group of managed pollinators after honey bees (Apis mellifera Linneaus). We have tested heavy metal (Pb, Cd, and Zn) accumulation, species diversity and parasite load (focusing on the common Nosema bombi Fantham and Porter, Microsporidia: Nosematidae) in bumblebees. For this purpose, we have chosen three heavy metal gradients (Guryevsk, Belovo and Olkusz) and two additional control sites (Kouznetskiy Alatau and Gornaya Shoria). All gradients were approximately 20 km long, starting in close proximity (1.3 km or less) of an active zinc or metal smelter, and each consisting of 5 sites located on semi-natural or drgraded meadows in various distance from the smelter. On each site min. 50 bumblebees were caught by sweep nets, each individual identified to species level and next, its abdomen homogenized and used for assessment of N. bombi infestation. Heavy metal levels in soil of the tested gradients varied between (Pb: 13.6-814.2 mg kg[^-1], Cd: 0.14-20.3 mg kg[^-1], Zn: 67.0-889.3 mg kg[^-1]) Bumblebees accumulated Pb and Cd (Pb: 0.21-3.3 mg kg[^-1], Cd: 0.002-0.069 mg kg[^-1]) in their bodies. The content of these metals in bumblebee bodies correlated with their content in soil (Pb: P <0.01, Cd: P = 0.002). However, no correlation was found between the Zn contents in bumblebees (Zn: 74.7-81.9 mg kg[^-1]) and the soil. We have also found that the metal contents in soil or in the bodies of bumblebees caused no changes in species diversity or dominance on polluted sites, irrespective of type and the level of contamination. The variation of Shannon diversity (H.), as well as Simpson.s diversity (D) were similar in all studied sites and ranged from 0.543 to 0.81 and from 0.152 to 0.484 respectively. The proportion of infected individuals was generally not higher than 0.29 and did not differ significantly among the studied sites. Incidentally, based on variation in the small subunit ribosomal RNA (SSU-rRNA) gene, we have found a new strain of Nosema bombi in the Kouznetskiy Alatau and Gornaya Shoria (West Siberia, Kemerovo Region) samples. The new small subunit RNA sequence in the new strain of N. bombi was named N. bombi WS2 (West Siberia) SSU rRNA. Based on the obtained results we conclude, that bumblebees can withstand or even successfully deal with heavy metal contamination at certain levels.
Rocznik
Strony
599--610
Opis fizyczny
Bibliogr. 34 poz.,
Twórcy
autor
autor
autor
autor
Bibliografia
  • 1. Biesmeijer J.C., Roberts S.P.M., Reemer M., Ohlemuller R., Edwards M., Peeters T., Schaffers A.P., Potts S.G., Kleukers R., Thomas C.D., Settele J. Kunin W.E. 2006 – Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands – Science, 313: 351–354.
  • 2. BioDiversity Professional © 1997 – The Natural History Museum / Scottish Association for Marine Science.
  • 3. Brittain C.A., Vighi M., Bommarco R., Settele J., Potts S. 2010 – Impacts of pesticide on pollinator richness at different spatial scales – Basic Appl. Ecol. 11: 106–115.
  • 4. Brown M.J.F., Loosli R., Schmid-Hempel P. 2000 – Condition-dependent expression of virulence in a trypanosome infecting bumblebees – Oikos, 91: 421–427.
  • 5. Bolotov I.N., Kolosova Yu.S. 2006 – Trends in the formation of biotopic complexes of bumblebees (Hymenoptera, Apidae: Bombini) in Northern Taiga Karst Landscape of the Western Russian Plain – Russ. J. Ecol. 3: 173–183.
  • 6. Cane J.H., Tepedino V.J. 2001 – Causes and extent of declines among native North American invertebrate pollinators: detection, evidence, and consequences – Conserv. Ecol. 5: 1.
  • 7. Chapin III F.S., Walker B.H., Hobbs R.J., Hooper D.U., Lawton J.H., Sala O.E., Tilman D. 1997 – Biotic Control over the Functioning of Ecosystems – Science, 25: 500–504.
  • 8. Eremeeva N.I., Suchchev D.V. 2005 – Structural changes in the fauna of pollinating insects in urban landscapes – Russ. J. Ecol. 4: 259–265.
  • 9. Goulson D., Lye G.C., Darvill B. 2008 – Decline and Conservation of Bumble Bees – Annu. Rev. Entomol. 53:191–208.
  • 10. Grixti J.C., Wong L.T, Cameron S.A., Favret C. 2008 – Decline of bumble bees (Bombus) in the North American Midwest – Biol. Conserv. 142: 75–84
  • 11. Imhoof B., Schmid-Hempel P. 1999 – Colony success of the bumble bee, Bombus terrestris, in relation to infections by two protozoan parasites, Crithidia bombi and Nosema bombi – Insect. Soc. 46: 233–238.
  • 12. Jones K.C. 1987 – Honey as an indicator of heavy metal contamination – Water Air Soil Poll. 33: 179–189.
  • 13. Kearns C.A., Inouye D.W., Waser N.M. 1998 – Endangered mutualisms: the conservation of plant–pollinator interactions – Annu. Rev. Ecol. Syst. 29: 83–112.
  • 14. Kenta T., Inari N., Nagamitsu T., Goka K., Hiura T. 2007 – Commercialized European bumblebee can cause pollination disturbance: an experiment on seven native plant species in Japan – Biol. Conserv. 134: 298–309.
  • 15. Kevan P.G. 1991 – Pollination: keystone process in sustainable global productivity – Acta Horticult. 288: 103–109.
  • 16. Krauss F.B., Szentgyörgyi H., Rożej E., Rhode M., Moroń D., Woyciechowski M., Moritz R.F.A. 2011 – Greenhouse Bumblebees (Bombus terrestris) spread their genes into the wild – Conserv. Gen. 12: 187–192
  • 17. Lane T.W., Morel F.M.M. 2000 – A biological function for cadmium in marine diatoms –P. Natl. Acad. Sci. 97: 4627–4631.
  • 18. Larsson J.I.R. 2006 – Cytological variation and pathogenicity of the bumblebee parasite Nosema bombi (Microspora, Nosematidae) – J. Invertebr. Pathol. 94: 1–1.
  • 19. Maavara V., Martin A.-J., Oja, A., Nuorteva P. 2007 – Sampling of Different Social Categories of Red Wood Ants (Formica s. str.) for Biomonitoring (In: Environmental Sampling for Trace Analysis, Ed. B. Markert) –Wiley-VCH Verlag GmbH, Weinheim, Germany, pp. 465–289.
  • 20. Malone L.A., Gatehouse H.S., Tregidga E.L. 2001 – Effects of time, temperature, and honey on Nosema apis (Microsporidia: Nosematidae), a parasite of the honeybee, Apis mellifera (Hymenoptera: Apidae) – J. Invertebr. Pathol. 77: 258 – 268.
  • 21. MacFarlane R.P., Lipa J., Liu H.J. 1995 – Bumblebee pathogens and internal enemies – Bee World, 76: 130–148.
  • 22. McIvor C.A., Malone L.A. 1995 – Nosema bombi, a microsporidian pathogen of the bumblebee Bombus terrestris (L.) – New Zealand J. Zool. 22: 25–31.
  • 23. Moroń D., Szentgyörgyi H., Grześ I., Wantuch M., Rożej E., Settele J, Potts S.G, Laskowski R., Woyciechowski M. 2010 – The Effect of Heavy Metal Pollution on the Development of Wild Bees (In: Atlas of Biodiversity Risk, Eds: J. Settele, L. Penev, T. Georgiev, R. Grabaum, V. Grobelnik, V. Hammen, S. Klotz, M. Kotarac, I. Kuehn) – Pensoft Publishers, Sofia, pp. 224–225.
  • 24. Nemerow N. L. 1985 – Stream, Lake, Estuary, and Ocean Pollution. Van Nostrand Reinhold, New York
  • 25. Pollinator Parasite Project 2006 – Biodiversity, impact and control of Microsporidia in bumble bee (Bombus spp.) pollinators” – http://www.entom.slu.se/res/Bumble%20Bee/index.htm.
  • 26. Shannon C.E. 1948 – A Mathematical Theory of Communication – AT&T Tech J. 27, 379–423, 623–656.
  • 27. Schmid-Hempel P., Loosli R. 1998 – A contribution to the knowledge of Nosema infections in bumblebees, Bombus spp – Apidologie, 29: 525–535.
  • 28. Sibly R.M., Calow P. 1989 – A life-cycle theory of response to stress – Biol. J. Linn. Soc. 37: 101–116.
  • 29. Simpson E.H. 1949 – Measurement of diversity – Nature, 163: 688.
  • 30. Sorvari J., Rantala L.M., Rantala M.J., Hakkarainen H., Eeva T. 2007 – Heavy metal pollution disturbs immune response in wild ant populations – Environ. Pollut. 145: 323–328
  • 31. StatSoft, Inc. (2008). STATISTICA (data analysis software system), version 8.0. www.statsoft.com.
  • 32. Steffan-Dewenter I., Münzenberg U., Bürger Ch., Thiel C., Tscharntke T., 2002 – Scale-dependent effects of landscape context on three pollinator guilds – Ecology,83: 1421–1432.
  • 33. Tay W.T., O’Mahony E.M., Paxton R.J. 2005 – Complete rRna Gene Sequences Reveal That the Microsporidium Nosema bombi Infects Diverse Bumblebee (Bombus spp.) Hosts and Contains Multiple Polymorphic Sites – J. Eukaryot. Microbiol. 52: 505–513
  • 34. Tyler G., Balsberg Påhlsson A-M., Bengtsson G., Bååth E., Tranvik L. 1989 – Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates – Water Air Soil Poll. 47: 189–215.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3303-2754
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.