PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variations in foliar nutrient resorption efficiency of different plant growth forms in a temperate sandy grassland

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Foliar nutrient resorption is an important strategy which allows leaf nutrients to be reused rather than lost with leaf fall, particularly in nutrient-poor ecosystems where even small nutrient losses can have significantly negative impacts on plant survival, competitive ability, and fitness. However, plants vary greatly in nitrogen (N) and phosphorus (P) resorption among plant growth forms during leaf senescence, which may be vital to understand the role of plant growth forms in ecosystem functioning. Green and senesced leaf N and P concentrations of 39 plant species in sandy grassland (Horqin Sand Land) of northern China were analyzed to detect variations of nutrient resorption efficiency among plant growth forms. The results showed that nitrogen resorption efficiency (NRE) ranged from 29% to 74%, with an average ([plus or minus] SD) of 50.3 [plus or minus] 11.2%, and phosphorus resorption efficiency (PRE) varied among species between 46% and 82%, with a mean ([plus or minus] SD) of 68.4 [plus or minus] 6.9%, suggesting that nutrient resorption is a vital nutrient conservation strategy in this ecosystem. In addition, NRE and PRE differed significantly among the dominant plant growth forms in this sandy grassland. NRE for N-fixing species and graminoids were significantly lower relative to NRE for shrubs and forbs, but mean PRE of graminoids was significantly higher than those of N fixers, shrubs and forbs. These data give indirect evidence that the differentiation of N and P conservation serve as an important mechanism permitting the co-existence of growth forms in arid systems.
Rocznik
Strony
355--365
Opis fizyczny
Bibliogr. 48 poz.,Rys., tab.,
Twórcy
autor
autor
autor
autor
autor
  • Naiman Desertification Research Station Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 322 Donggang West Road, Lanzhou 730000, China ; Extreme Stress Resistance and Biotechnology Laboratory Cold and A, zhaoxy@cern.ac.cn
Bibliografia
  • 1. Aerts R. 1996 – Nutrient resorption from senescing leaves of perennials: Are there general patterns? – J. Ecol. 84: 597–608.
  • 2. Aerts R., Chapin F.S. 2000 – The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns – Advances in Ecological Research, Academic Press Inc, San Diego, 30: 1–67.
  • 3. Aerts R., Verhoeven J.T.A., Whigham D.F. 1999 – Plant-mediated controls on nutrient cycling in temperate fens and bogs – Ecology, 80: 2170–2181.
  • 4. Berendse F. 1998 – Effects of dominant plant species on soils during succession in nutrientpoor ecosystems – Biogeochem. 42: 73–88.
  • 5. Berg B., Johansson M.B., Meentemeyer V. 2000 – Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control – Can. J. For. Res. 30: 1136–1147.
  • 6. Bertiller M.B., Sain C.L., Carrera A.L., Vargas D.N. 2005 – Patterns of nitrogen and phosphorus conservation in dominant perennial grasses and shrubs across an aridity gradient in Patagonia, Argentina – J. Arid. Environ. 62: 209–223.
  • 7. Birk E.M., Vitousek P.M. 1986 – Nitrogen availability and nitrogen use efficiency in loblolly pine stands – Ecology, 67: 69–79.
  • 8. Chapin F.S. 1980 – The mineral-nutrition of wild plants – Ann. Rev. Ecol. Syst. 11: 233–260.
  • 9. Chapin F.S., Kedrowski R.A. 1983 – Seasonal changes in nitrogen and phosphorus fraction and autumn retranslocation in evergreen and deciduous Taiga trees – Ecology, 64: 376–391.
  • 10. Diehl P., Mazzarino M.J., Funes F., Fontenla S., Gobbi M., Ferrari J. 2003 – Nutrient conservation strategies in native Andean-Patagonian forests – J. Veg. Sci. 14: 63–70.
  • 11. Distel R.A., Moretto A.S., Didone N.G. 2003 – Nutrient resorption from senescing leaves in two Stipa species native to central Argentina – Austral. Ecol. 28: 210–215.
  • 12. Drenovsky R.E., Richards J.H. 2004 – Critical N:P values: Predicting nutrient deficiencies in desert shrublands – Plant Soil, 259: 59–69.
  • 13. Eckstein R.L., Karlsson P.S., Weih M. 1998a – Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions (In: 4th New Phytologist Symposium on at the Crossroads of Plant Physiology and Ecology, at the Meeting of the ENSA-M, Montpellier, France.) pp 177–189.
  • 14. Eckstein R.L., Karlsson P.S., Weih M. 1998b – The significance of resorption of leaf resources for shoot growth in evergreen and deciduous woody plants from a subarctic environment – Oikos, 81: 567–575.
  • 15. Eckstein R.L., Karlsson P.S., Weih M. 1999 – Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions – New Phytol. 143: 177–189.
  • 16. Escudero A., Delarco J.M., Garrido M.V. 1992 – The Efficiency of Nitrogen Retranslocation from Leaf Biomass in Quercus-Ilex Ecosystems – Vegetatio, 100: 225–237.
  • 17. Grimshaw H.M., Allen S.E., Parkinson J.A. 1989 – Nutrient elements (In: Chemical Analysis of Ecological Material, Ed: S E Allen) – Blackwell Scientific, Oxford, UK, pp 81–159.
  • 18. Killingbeck K.T. 1996 – Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency – Ecology, 77: 1716–1727.
  • 19. Killingbeck K.T., Whitford W.G. 2001 – Nutrient resorption in shrubs growing by design, and by default in Chihuahuan Desert arroyos – Oecologia, 128: 351–359.
  • 20. Knops J.M.H., Bradley K.L., Wedin D.A. 2002 – Mechanisms of plant species impacts on ecosystem nitrogen cycling – Ecol. Lett. 5: 454–466.
  • 21. Koerselman W., Meuleman A.F.M. 1996 – The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation – J. Appl. Ecol. 33: 1441–1450.
  • 22. Leffler A.J., Peek M.S., Ryel R.J., Ivans C.Y., Caldwell M.M. 2005 – Hydraulic redistribution through the root systems of senesced plants – Ecology, 86: 633–642.
  • 23. Li F.R., Kang L.F., Zhang H., Zhao L.Y., Shirato Y., Taniyama I. 2005 – Changes in intensity of wind erosion at different stages of degradation development in grasslands of Inner Mongolia, China – J. Arid. Environ. 62: 567–585.
  • 24. Li M. C., Liu D. Y., Kong G. Q. 2009 – Nutrient resorption and use efficiency at different canopy heights of alpine tree species Abies georgei var. Smithii (Viguie et Gaussen) Cheng, Tibetan Plateau – Pol. J. Ecol. 57: 63–72.
  • 25. Li F.R., Zhao L.Y., Zhang H., Zhang T.H., Shirato Y. 2004 – Wind erosion and airborne dust deposition in farmland during spring in the Horqin Sandy Land of eastern Inner Mongolia, China – Soil. Tillage. Res. 75: 121–130.
  • 26. Ludwig F., de Kroon H., Prins H.H.T., Berendse F. 2001 – Effects of nutrients and shade on tree-grass interactions in an East African savanna – J. Veg. Sci. 12: 579–588.
  • 27. Luo Y.Y., Zhao X.Y., Zuo X.A., Zhang J.H., Liu R.T., Wang S.K. 2010 – Leaf nitrogen resorption pattern along habitats of semi-arid sandy land with different nitrogen status – Pol. J. Ecol. 58: 707–716.
  • 28. Marschner H. 1995 – Mineral nutrition of higher plants – Academic Press, London, San Diego. pp. xv + 889.
  • 29. McCulley R.L., Jobbagy E.G., Pockman W.T., Jackson R.B. 2004 – Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems – Oecologia, 141: 620–628.
  • 30. Moretto A.S., Distel R.A. 2003 – Decomposition of and nutrient dynamics in leaf litter and roots of Poa ligularis and Stipa gyneriodes – J. Arid. Environ. 55: 503–514.
  • 31. Norby R. J., C otrufo M.F., Ineson P., O’Neill E.G., Canadell J.G. 2001 – Elevated CO2, litter chemistry, and decomposition: a synthesis – Oecologia, 127: 153–165.
  • 32. Quested H.M., Cornelissen J.H.C., Press M.C., Callaghan T.V., Aerts R., Trosien F., Riemann P., Gwynn-Jones D., Kondratchuk A., Jonasson S.E. 2003 – Decomposition of sub-arctic plants with differing nitrogen economies: A functional role for hemiparasites – Ecology, 84: 3209–3221.
  • 33. Quested H., Eriksson O., Fortunel C., Garnier E. 2007 – Plant traits relate to whole-community litter quality and decomposition following land use change – Func. Ecol. 21: 1016–1026.
  • 34. Ralhan P.K., Singh S.P. 1987 – Dynamics of nutrients and leaf mass in central Himalayan forest trees and shrubs – Ecology, 68: 1974–1983.
  • 35. Ratnam J., Sankaran M., Hanan N.P., Grant R.C., Zambatis N. 2008 – Nutrient resorption patterns of plant functional groups in a tropical savanna: variation and functional significance – Oecologia, 157: 141–151.
  • 36. Sankaran M., Ratnam J., Hanan N.P. 2004 –Tree-grass coexistence in savannas revisited - insights from an examination of assumptions and mechanisms invoked in existing models – Ecol. Lett. 7: 480–490.
  • 37. Small E. 1972 – Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants – Can. J. Bot. 50: 2227–2233.
  • 38. Su Y.Z., Li Y.L., Cui J.Y., Zhao W.Z. 2005 – Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China – Catena, 59: 267–278.
  • 39. Su Y.Z., Zhao H.L., Zhao W.Z., Zhang T.H. 2004 – Fractal features of soil particle size distribution and the implication for indicating desertification – Geoderma, 122: 43–49.
  • 40. Taylor B.R., Parsons W.F.J., Parkinson D. 1989 – Decomposition of Populus tremuloides Leaf Litter Accelerated by Addition of AlnusCrispa Litter – Can. J. For. Res. 19: 674–679.
  • 41. Verhoeven J.T.A., Koerselman W., Meuleman A.F.M. 1996 – Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: Relations with atmospheric inputs and management regimes – Trend Ecol. Evol. 11: 494–497.
  • 42. Vitousek P.M., Howarth R.W. 1991 – Nitrogen limitation on land in the sea-How can it occur. – Biogeochem. 13: 87–115.
  • 43. Yuan Z.Y., Li L.H., Han X.G., Huang J.H., Jiang G.M., Wan S.Q., Zhang W.H., Chen Q.S. 2005 – Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China – J. Arid Environ. 63: 191–202.
  • 44. Zhang J., Zhao H., Zhang T., Zhao X., Drake S. 2005a – Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land – J. Arid Environ. 62: 555–566.
  • 45. Zhang J.Y., Wang Y., Zhao X., Zhang T. 2005b – Grassland recovery by protection from grazing in a semi-arid sandy region of northern China - N. Z. J. Agric. Res., 48:277-284.
  • 46. Zhang X.Y., Gong S.L., Zhao T.L., Arimoto R., Wang Y.Q., Zhou Z.J. 2003 – Sources of Asian dust and role of climate change versus desertification in Asian dust emission – Geophys. Res. Lett. 30: 2272.
  • 47. Zhang T.H., Zhao H.L., Li S.G., Zhou R.L. 2004 – Grassland changes under grazing stress in Horqin sandy grassland in Inner Mongolia, China – N. Z. J. Agri. Res. 47: 307–312.
  • 48. Zou C.B., Barnes P.W., Archer S., McMurtry C.R. 2005 – Soil moisture redistribution as a mechanism of facilitation in Savanna tree-shrub clusters – Oecologia, 145: 32–40.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3224-2684
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.