PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Differences in global biomass and energy use between dinosaurs and mammals

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Estimates derived from the literature suggest that dinosaurs, even if they had a mammalian-type metabolism, produced globally much more biomass than mammals for the same amount of energy consumed. The average body mass of an individual dinosaur was several thousand times greater than in the case of mammals. Dinosaurs were one to several hundred times less numerous than mammals and, in comparison to mammals, the average number of individuals per dinosaur species was several to a dozen or so times lower than in mammals.
Rocznik
Strony
125--132
Opis fizyczny
Bibliogr. 43 poz.,Rys., tab.,
Twórcy
autor
  • Institute of Geology, University of Warsaw, ul. Żwirki i Wigury 93; PL-02-089 Warszawa, Poland
Bibliografia
  • 1. Alroy, J. 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science, 280, 731–734.
  • 2. Alroy, J. 2001. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science, 292, 1893–1896.
  • 3. Bakker, R.T. 1972. Anatomical and ecological evidence of endothermy in dinosaurs. Nature, 238, 81–85.
  • 4. Barnosky, A.D. 2008. Megafauna biomass tradeoff as a driver of Quaternary and future extinction. PNAS, 105 (suppl. 1), 11543–11548
  • 5. Brown, J.H. 1995. Macroecology, pp. 1–269. The University of Chicago Press; Chicago – London.
  • 6. Brown, J.H. and Maurer, B.A. 1989. Macroecology: the division of food and space among species on continents. Science, 243, 1145–1150.
  • 7. Chiappe, L.M., Schmitt, J.G., Jackson, F.D, Garrido, A., Dingus, L. and Grellet-Tinner, G. 2004. Nest structure for sauropods: sedimentary criteria for recognition of dinosaur nesting traces. Palaios, 19, 89–95.
  • 8. De Ricqlès, A.J. 1974. Evolution of endothermy: histological evidence. Evolutionary Theory, 1, 51–80.
  • 9. Farlow, J.O. 1976. A consideration of the trophic dynamics of a Late Cretaceous large-dinosaur community (Oldman Formation). Ecology, 57, 841–857.
  • 10. Farlow, J.O. 1990. Dinosaur energetics and thermal biology. In: Dodson, P. and Osmólska, H. (Eds), The Dinosauria, pp. 43–55. The University of California Press; Berkeley.
  • 11. Farlow, J.O. 1993. On the rareness of big, fierce animals: speculations about the body sizes, population densities, and geographic ranges of predatory mammals and large carnivorous dinosaurs. American Journal of Science, 293-A, 167–199.
  • 12. Farlow, J.O., Coroian, I.D. and Foster, J.R. 2010. Giants on the landscape: modelling the abundance of megaher-bivorous dinosaurs of the Morrison formation (Late Jurassic, western USA). Historical Biology, 22, 403–429.
  • 13. Han, B.-P. and Straskraba, M. 2001. Size dependence of biomass spectra and abundance spectra: the optimal distribution. Ecological Modelling, 145, 175–187.
  • 14. Hone, D.W.E., Keesey, T.M., Pisani D. and Purvis A. 2005. Macroevolutionary trends in the Dinosauria: Cope’s rule. Journal of Evolutionary Biology, 18, 587–595.
  • 15. Letcher, A.J. and Harvey, P.H. 1994. Variation in geographical range size among mammals of the Palearctic. American Naturalist, 144, 30–42.
  • 16. Lurié, D. and Wagensberg, J. 1983. Note on biomass diversity in ecology. Bulletin of Mathematical Biology, 45, 287–293.
  • 17. Lurié, D., Valls, J. and Wagensberg, J. 1983. Thermodynamic approach to biomass distribution in ecological systems. Bulletin of Mathematical Biology, 45, 869–872.
  • 18. Martin, P.S. 1967. Pleistocene overkill. Natural History, 76, 32–38.
  • 19. Maurer, B.A. and Brown, J.H. 1988. Distribution of energy use and biomass among species of North American terrestrial birds. Ecology, 69, 1923–1932.
  • 20. Maurer, B.A., Brown, J.H. and Rusler R.D. 1992. The micro and macro in body size evolution. Evolution, 46, 939–953.
  • 21. McNab, B.K. 2009. Resources and energetics determined dinosaur maximal size. PNAS, 106, 12184–12188
  • 22. Murray, B.R. and Dickman, C.R. 2000. Relationships between body size and geographical range size among Australian mammals: Has human impact distorted macroecological patterns? Ecography, 23, 92–100.
  • 23. Ogg, J.G., Ogg, G. and Gradstein, F.M. 2008. The concise geologic time scale, pp. 1–177. Cambridge University Press; Cambridge.
  • 24. Paladino, F.V., Spotila, J.R. and Dodson, P. 1997. A blueprint for giants: modeling the physiology of large dinosaurs, pp. 491–504, In: Farlow, J.O. and Brett-Surman, M.K. (Eds) The complete dinosaur. Indiana University Press; Bloomington and Indianapolis.
  • 25. Paul, G. S. 2010. The Princeton field guide to dinosaurs, pp. 1–320. Princeton University Press; Princeton – San Francisco.
  • 26. Peczkis, J. 1994. Implications of body-mass estimates for dinosaurs. Journal of Vertebrate Paleontology, 14, 520–523.
  • 27. Peters, R.H. 1983. The ecological implications of body size, pp. 1–329. Cambridge University Press; Cambridge.
  • 28. Pough, F.H. 1980. The advantages of ectothermy for tetrapods. American Naturalist, 115, 92–112.
  • 29. Prigodine, I. and Wiame, J.M. 1946. Biologie et thermodynamique des phénomènes irréversibles. Experentia, 2, 451–453.
  • 30. Raup, D.M. and Boyajian G.E. 1988. Pattern of generic extinction in the fossil record. Paleobiology, 14, 109–125.
  • 31. Reid, R.E.H. 1984. Primary bone and dinosaurian physiology. Geological Magazine, 121, 589–598.
  • 32. Reid, R.E.H. 1990. Zonal “growth rings” in dinosaurs. Modern Geology, 11, 19–48.
  • 33. Russell, D.A. 1995. China and the lost worlds of the dinosaurian era. Historical Biology, 10, 3–12.
  • 34. Russell, L.S. 1965. Body temperature of dinosaurs and its relationship to their extinction. Journal of Paleontology, 39, 497–501.
  • 35. Seebacher, F. 2001. A new method to calculate allometric length-mass relationship of dinosaurs. Journal of Vertebrate Paleontology, 21, 51–60.
  • 36. Silva, M., Brown, J.H. and Downing, J.A. 1997. Differences in population density and energy use between birds and mammals: a macroecological perspective. Journal of Animal Ecology, 66, 327–340.
  • 37. Smith, A.G., Smith, D.G. and Funnell, B.M. 1994. Atlas of Mesozoic and Cenozoic coastlines, pp. 1–99. Cambridge University Press; Cambridge.
  • 38. Smith, F.A., Lyons, S.K., Ernest, S.K.M., Jones K.E., Kaufman, D.M., Dayan, T., Marquet, P.A., Brown, J.H. and Haskell, J.P. 2003. Body mass of Late Quaternary mammals. Ecology, 84, 3403–3417.
  • 39. Spotila, J.R., Lommen, P.W., Bakken, G.S. and Gates, D.M. 1973. A mathematical model for body temperature of large reptiles: Implications for dinosaur ecology. American Naturalist, 107, 391–404.
  • 40. Tiffney, B.H. 1997. Land plants as food and habitat in the age of dinosaurs, pp. 352–370, In: Farlow, J.O. and Brett-Surman, M.K. (Eds), The complete dinosaur. Indiana University Press; Bloomington and Indianapolis.
  • 41. Wang, S.C. and Dodson, P. 2006. Estimating the diversity of dinosaurs. PNAS, 103, 13601–13605.
  • 42. White, C.R. and Seymour, R.S. 2005. Allometric scaling of mammalian metabolism. The Journal of Experimental Biology, 208, 1611–1619.
  • 43. Wright, D.H. 1990. Human impact on energy flow through natural ecosystems, and implications for species endangerment. Ambio, 19, 189–194.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3205-2378
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.