PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composition and distribution of epiphytic midges (Diptera: Chironomidae) in relation to emergent macrophytes cover in shallow lakes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of emergent macrophytes (dominated by Phragmites australis (Cav.) Trin. ex Steud.) on the species composition, richness and abundance of epiphytic midges (Diptera: Chironomidae) was studied in five shallow lakes of eastern Poland during three seasons (May, July and October) of 2001. The lakes represented three states: clear (macrophyte dominated), intermediate (phytoplankton-macrophyte dominated) and turbid (phytoplankton dominated). The trophic status of lake strongly affected the assemblages of chironomids living on the surfaces of common reed. Habitat conditions regulated mostly densities and relative abundance of midge taxa and did not have any significant influence on the number of taxa. The Canonical Correspondence Analysis of epiphytic fauna showed the significance of 5 environmental variables: Secchi disc visibility, dissolved oxygen, reed density, concentration of total phosphorous and epiphytic chlorophyll-a. The analysis separated epiphytic midges into two groups. The first group included taxa limited by low oxygen content and water transparency and corresponds with clear state habitats. To the second group belong taxa typical of eutrophic waters with densities determined by the concentrations of total phosphorous and chlorophyll-a, common in lakes of intermediate state and in particular of turbid state.
Rocznik
Strony
141--151
Opis fizyczny
Bibliogr. 67 poz.,Rys., tab.,
Twórcy
Bibliografia
  • 1. Anjos A. F., Takeda A. M. 2009 – Análise da dieta das larvas de 4º estádio de Cricotopus sp. (Diptera: Chironomidae), em diferentes substratos artificiais e fases hídricas, no trecho superior do rio Paraná – Acta Scient.Biol. Sci. Maringá, 31: 371–377.
  • 2. Armitage P., Cranston P. S., Pinder L. C. V. 1995 – The Chironomidae. The biology and ecology of non-biting midges – Chapman and Hall, London, 577 pp.
  • 3. Balcombe S. R., Closs G. P., Suter P. J. 2007 – Density and distribution of epiphytic invertebrates on emergent macrophytes in a floodplain billabong – River Res. Appl. 23: 843–857.
  • 4. Berg M.B. 1995 – Larval food and feeding behavior (In: The Chironomidae. The biology and ecology of non-bitting midges, Eds: P.D. Armitage, P.S. Cranston, L.C.V. Pinder) – Chapman & Hall, London, pp. 136–168.
  • 5. Best E. P. H., Zippin M., Dassen J. H. A. 1981 – Growth and production of Phragmites australis in Lake Vechten (The Netherlands) – Aquat. Ecol. 3: 165–173.
  • 6. Burdett A. S., Watts R. J. 2009 – Modifying living space: an experimental study of the influence of vegetation on aquatic invertebrate community structure – Hydrobiologia, 618: 161–173.
  • 7. Canfield D. E., Shireman J. V., Colle D. E., Haller W. T., Watkins C. E., Maceina M.J. 1984 – Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes – Can. J. Fish. Aquat. Sci. 41: 497–501.
  • 8. Cañedo-Argüelles M. 2009 – Ecology of macroinvertebrate communities in transitional waters: Influence of the environment, response to disturbance and successional processes – Ph.D. thesis, University of Barcelona.
  • 9. Cañedo-Argüelles M., Rieradevall M. 2009 – Quantification of environment-driven changes in epiphytic macroinvertebrate communities associated to Phragmites australis – J. Limnology, 68: 229–241.
  • 10. Cattaneo A. 1983 – Grazing on epiphytes – Limnol. Oceanogr. 28: 124–132.
  • 11. Cattaneo A., Galanti G., Gentinetta S., Romo S. 1998 – Epiphytic algae and macroinvertebrates in an Italian lake – Freshwat. Biol. 39: 725–740.
  • 12. Chernovsky A. A. 1949 – Opredelitel lichinok komarov semeistva Tendipedinae [Identification of larvae of the midge family Tendipedidae] – Izv. Akad. Nauk, SSSR 31, 186 pp. (in Russian).
  • 13. Chilton E. W. II. 1990 – Macroinvertebrate communities associated with three aquatic macrophytes (Ceratophyllum demersum, Myriophyllum spicatum and Vallisner ia americana) in Lake Onalaska, Wisconsin – J. Freshwater Ecol. 5: 455–466.
  • 14. Chindah A.Ch. 2004 – Responses of periphyton community to salinity gradient in tropical estuary, Niger Delta – Pol. J. Ecol. 52: 83–89.
  • 15. Cowie N. R., Sutherland W. J., Ditlhogo K. M., James R. 1992 – The effects of conservation management of reed beds. II. The flora and litter disappearance – J. Appl. Ecol. 29: 277–284.
  • 16. Cranston P. 1996 – Identification Guide to the Chironomidae of New South Wales – AWT Identification Guide Number 1. Australian Water Technologies Pty Ltd, West Ryde, NSW, 376 pp.
  • 17. Crowder L. B., Cooper W. E. 1982 – Habitat structural complexity and the interaction between bluegills and their prey – Ecology, 63: 1802–1813.
  • 18. De Szalay F. A., Resh V. H. 2000 – Factors influencing macroinvertebrate colonization of seasonal wetlands: responses to emergent plant cover – Freshwat. Biol. 45: 295–308.
  • 19. Dionne M., Folt C. L. 1989 – An experimental analysis of macrophyte growth forms as fish foraging habitat – Can. J. Fish. Aquat. Sci. 48:123–131.
  • 20. Dvorak J., Best E. P. H. 1982 – Macro-invertebrate communities associated with the macrophytes of Lake Vechten: structure and functional relationships – Hydrobiologia, 95: 115–126.
  • 21. Dvorak J. 1996 – An example of relationships between macrophytes, macroinvertebrates and their food resources in a shallow eutrophic lake – Hydrobiologia, 339: 27–36.
  • 22. Dukowska M., Grzybkowska M., Sitkowska M., Żelazna-Wieczorek J., Szeląg-Wasielewska E. 1999 – Food resource partitioning between chironomid species associated with submerged vegetations in the Warta River below the dam reservoir, Poland – Acta Hydrobiol. 41, Suppl. 6: 219–229.
  • 23. Epler J. H. 2001 – Identification manual for the larval Chironomidae (Diptera) of North and South Carolina – version 1.0, Crawfordwille, 53 pp.
  • 24. Gasith A., Hoyer M. V. 1998 – Structuring role of macrophytes in lakes: changing influence along lake size and depth gradients (In: The structuring role of submerged macrophytes in lakes, Eds: E. Jeppesen, Ma. Sondergaard, Mo. Sondergaard, K. Christoffersen) – Springer Verlag, New York, pp. 381–292.
  • 25. Giles N., Wright R. M., Shoesmith E. A. 1995 – The effect of perch, Perca fluviatilis L., and bronze bream, Abramis brama (L.), on insect emergence and benthic invertebrate abundance in experimental ponds – Fisheries Management and Ecology, 2: 17–25.
  • 26. Glinsky E. 1984 – The role of fish predation and spatial heterogeneity in determining benthic community structure – Ecology, 65: 455–468.
  • 27. Golterman H. L. 1969 – Methods for chemical analysis of freshwaters. IBP Handbook No. 8. – Blackwell Scientific Publications, Oxford, Edinburgh, 188 pp.
  • 28. Grenouillet G., Pont D. 2001 – Juvenile fishes in macrophytes beds: influence of food resources, habitat structure and body size – J. Fish Biol. 59: 939–959.
  • 29. Hann B.J. 1991 – Invertebrate grazer-periphyton interactions in an eutrophic marsh pond – Freshwat. Biol., 26: 87–96.
  • 30. Hermanowicz W., Dożańska W., Dojlido J., Koziorowski B. 1976 – Physical and chemical investigation methods of water and sewage – Arkady Press, Warsaw, 486 pp.
  • 31. Hanson L. A. 1992 – Factors regulating periphytic algal biomass – Limnol. Oceanogr. 37: 322–328.
  • 32. Hershey A. E. 1987 – Tubes and foraging behavior in larval Chironomidae: implication for predator avoidance – Oecologia, 73: 236–241.
  • 33. Hirvenoja M. 1973 – Revision der Gattung Cricotopus van. Der Wulp und ihrer Verwandten (Diptera, Chironomidae) – Ann. Zool. Fennici, 10: 257–304.
  • 34. Horppila J., Nurminen L. 2001 – The effect of an emergent macrophyte (Typha angustifolia) on sediment resuspension in a shallow north temperate lake – Freshwat. Biol. 46: 1447–1455.
  • 35. Jayawardana J. M. C. K., Westbrooke M., Wilson M., Hurst C. 2006 – Macroinvertebrate communities in Phragmites australis (Cav.) Trin. ex Steud. reed beds and open bank habitats in central Victorian streams in Australia – Hydrobiologia, 568: 169–185.
  • 36. Jones J. I., Sayer C. D. 2003 – Does the fishinvertebrate–periphyton cascade precipitate plant loss in shallow lakes? – Ecology, 84: 2155–2167.
  • 37. Keast A. 1984 – The introduced aquatic macrophyte, Myriophyllum spicatum, as habitat for fish and their invertebrate prey – Can. J. Zool. 62: 1289–1303.
  • 38. Kołodziejczyk A. 1980 – The role of littoral animals in detritus transformation – Wiad. Ekol. 26: 233–252.
  • 39. Kornijów R., Gulati R.D. 1992 – Macrofauna and its ecology in Lake Zwemlust, after biomanipulation. II. Fauna inhabiting hydrophytes – Arch. Hydrobiol. 123: 349–359.
  • 40. Kornijów R., Kairesalo T. 1994 – A simple apparatus for sampling epiphytic communities associated with emergent macrophytes – Hydrobiologia, 294: 141–143.
  • 41. Kornijów R., Pęczuła W., Lorens B., Rechulicz J., Ligęza S. 2002 – Shallow Western Polesie lakes from the view point of alternative stable states theory – Acta Agrophysica, 68, part III: 61–73.
  • 42. Lalonde S., Downing J. A. 1991 – Epiphyton biomass is related to lake trophic status, depth and plant architecture – Can. J. Fish. Aquat. Sci. 48: 2285–2291.
  • 43. Marks M., Lapin B., Randall J. 1994 – Phragmites australis (P. communis): threats, management and monitoring – Nat. Areas J. 14: 285–294.
  • 44. Martin-Smith K. M. 1993 – Abundance of mobile epifauna: the role of habitat complexity and predation by fishes – J. Exp. Mar. Biol. Ecol. 174: 243–260.
  • 45. Mittelbach G. G. 1988 – Competition among refuging sunfishes and effects of fish density on littoral zone invertebrates – Ecology, 69: 614–623.
  • 46. Nolte U. 1993 – Egg masses of Chironomidae (Diptera). A review, including new observations and a preliminary key – Entomologia Scandinavica Suppl. 43: 1–75.
  • 47. Persson L., Crowder L. B. 1998 – Fish-habitat interaction mediated via ontogenic niche shifts (In: The structuring role of submerged macrophytes in lakes, Eds: E. Jeppesen, Ma. Sondergaard, Mo. Sondergaard, K. Christofersen) – Springer-Verlag, New York. pp. 197–213.
  • 48. Polunin N. V. C. 1982 – Processes contributing to the decay of reed (Phragmites australis) litter in fresh water – Arch. Hydrobiol. 94: 182–209.
  • 49. Rennie M. D., Jackson L. J. 2005 – The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish – Can. J. Fish. Aq. Sci. 62: 2088–2099.
  • 50. Rooth J. E., Stevenson J. C. 2000 – Sediment deposition patterns in Phragmites australis communities: implications for coastal areas threatened by rising sea level – Wetland Ecol. Manage. 8: 173–183.
  • 51. Sahuquillo M., Miracle M. R., Rieradevall M. 2006 – Macroinvertebrates associated with reed stems – Verh. Internat. Verein. Limnol. 29: 2245–2246.
  • 52. Sahuquillo M., Miracle M. R., Rieradevall M., Kornijów R. 2008 – Macroinvertebrate assemblages on reed beds, with special attention to Chironomidae (Diptera), in Mediterranean shallow lakes – Limnetica, 27: 239–250.
  • 53. Scheffer M. 2001 – Alternative attractors of shallow lakes – The Scientific World, 1: 254–263.
  • 54. Schriver P., Bogestrand J., Jeppesen E., Søndergaard M. 1995 – Impact of submerged macrophytes on fish-zooplanktonphytoplankton interactions: large scale enclosure experiments in a shallow eutrophic lake – Freshwat. Biol. 33: 255–270.
  • 55. Taniguchi H., Nakano S., Tokeshi M . 2003 – Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants – Freshwat. Biol. 48: 718–728.
  • 56. Tarkowska-Kukuryk M. 2006 – Water soldier Stratiotes aloides L. (Hydrochariceae) as a substratum for macroinvertebrates in a shallow eutrophic lake – Pol. J. Ecol. 54: 441–451.
  • 57. Tarkowska-Kukuryk M., Kornijów R. 2008 – Influence of spatial distribution of submerged macrophytes on chironomids assemblages in shallow lakes – Pol. J. Ecol. 56: 569–579.
  • 58. Tarkowska-Kukuryk M., Mieczan T. 2008 - Diet composition of epiphytic chironomids of the Cricotopus sylvestris group (Diptera: Chironomidae) in a shallow hypertrophic lake - Aquatic Insects, 30: 285–294.
  • 59. Tavarres-Cromar A. F., Williams D. D. 1997 – Dietary overlap and coexistence of chironomid larvae in a detritus-based stream – Hydrobiologia, 354: 67–81.
  • 60. Tessier C., Cattaneo A., Pinel-Alloul B., Galanti G., Morabito G. 2004 – Biomass, composition and size structure of invertebrate communities associated to different types of aquatic vegetation during summer in Lago di Candia (Italy) – J. Limnol. 63: 190–198.
  • 61. Tokeshi M. 1995 – Life cycles and population dynamics (In: The Chironomidae. The biology and ecology of non-bitting midges, Eds: P.D. Armitage, P.S. Cranston, L.C.V. Pinder) – Chapman & Hall, London, pp. 225–268.
  • 62. Tolonen K. T., Hämäläinen, Holopainen I. J., Mikkonen K., Karjalainen J. 2003 - Body size and substrate association of littoral insects in relation to vegetation structure – Hydrobiologia, 499: 179–190.
  • 63. Ueno R., Iwakuma T., Nohara S. 1993 – Chironomid fauna in the emergent plant zone of Lake Kasumigaura, Japan – Japn. J. Limnol. 54: 293–303.
  • 64. Vande Meutter F., Stoks R., De Meester L. 2005 – The effect of turbidity state and microhabitat on macroinvertebrate assemblages: a pilot study of six shallow lakes – Hydrobiologia, 542: 379–390.
  • 65. Wiederholm T. 1983 – Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae – Entomologica Scandinavica. Supplement 19. Borgströms Tryckeri AB, Motala, 457 pp.
  • 66. Wilson R. S., Ruse L. 2005 – A guide to the identification of genera of chironomid pupal exuviae occurring in Britain and Northern Ireland (including common genera from Northern Europe) and their use in monitoring lotic and lentic fresh waters – Freshwater Biological Association, Cumbria, 176 pp.
  • 67. Zar J. H. 1984 – Biostatistical Analysis – Prentice-Hall, Englewood Cliffs, NJ.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3205-2375
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.