PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Recent changes in large and shallow Lake Peipsi (Estonia/Russia) : causes and consequences

Identyfikatory
Warianty tytułu
Konferencja
All-Poland Scientific Conference "Interspecies Relationships at Levels of Organization" (2009 ; Krasnobród)
Języki publikacji
EN
Abstrakty
EN
The large and shallow lowland lakes constitute a distinctive type of lake ecosystem, because of their polymixis, frequent resuspension of bottom sediments and internal nutrient loading, high turbidity and usually high productivity and eutrophication rate. Lake Peipsi is one of the largest lake in Europe, its area is 3555 km2 and mean depth is 7.1 m. The study results for the vegetation seasons (May-October) obtained for the decade 1997-2008 allow to evaluate the long-term changes in the functioning of its ecosystem in terms of dynamics of phyto- and zooplankton and nutrient content in a lake. Lake Peipsi consists of three different parts: the northern, the largest and deepest one is eutrophic L. Peipsi s.s. (sensu stricto), the southernmost part is hypertrophic L. Pihkva, connected with L. Peipsi s.s. by the river-like L. Lammijarv. The decrease in nutrient loading to L. Peipsi observed in the early 1990s was brought about by social changes (collapse of Soviet type agriculture) rather than by the purification of point-pollution sources. In the northern part, Lake Peipsi s.s., the content of both nitrogen and phosphorus was stabilized, while the increase in phosphorus in the water of L. Pihkva was evident. The resistance of the three lake parts to external nutrient loading is different. It seems that the ecosystem of the southern lake part (L. Pihkva) is losing its resilience. The disturbance of the ecosystem is most likely caused by the fact that the slight trend of re-oligotrophication beginning in the early 1990s was reversed in the mid-1990s due to increasing P loading. The share of cyanobacteria in phytoplankton biomass increased from 20% to 60% in L. Peipsi s.s., and from 30% to 90% in the southern parts of the lake in the summer months. The lake was characterized by massive cyanobacterial blooms. Potentially toxic genera (Microcystis, Aphanizomenon, Anabaena, Gloeotrichia) dominated, and the quantity of microcystins in the lake was relatively large. The biomass of phytoplankton increased whereas that of all zooplankton groups - cladocerans, copepods and rotifers - decreased. The most essential decline affected rotifers: their abundance was about 60% lower in 2001-2008 than in the 1990s. The biomass of copepods decreased almost 50% and that of cladocerans 34%. In parallel with changes in plankton, the fish composition of L. Peipsi was characterized by sharp decline of planktivorous smelt (Osmerus eperlanus eperlanus m. spirinchus Pallas) and vendace (Coregonus albula (L). The most likely causes of the changes seem to be mainly the anthropogenic P input, decreasing N:P ratio, cyanobacterial toxins, and changes in ichthyocoenosis. Our data from last decade demonstrate a kind of disturbance in the ecosystem of the lake as compared to the second half of last century. The disturbance of the ecosystem is most likely caused by the fact that the slight trend of re-oligotrophication beginning in the early 1990s was reversed in the mid-199s due to increasing P loading from southern part of lake watershed.
Rocznik
Strony
645--662
Opis fizyczny
Bibliogr. 93 poz., il., tab.
Twórcy
autor
autor
autor
autor
  • Centre for Limnology , Estonian University of Life Sciences, 611117 Rannu, Tartumaa, Estonia, juta.haberman@emu.ee
Bibliografia
  • 1. Agrawal M.K., Bagchi D., Bagchi S.N. 2001 – Acute inhibition of protease and suppression of growth in zooplankter, Moina macrocarpa, by Microcystis blooms collected in central India – Hydrobiologia, 464: 37–44.
  • 2. Alekseev V., Lampert W. 2004 – Maternal effects of photoperiod and food level on life history characteristics of the cladoceran Daphnia pulicaria Forbes – Hydrobiologia, 526: 225–230.
  • 3. Anderson N.J., Jeppesen E., Søndergaard M. 2005 – Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction – Freshw. Biol. 50: 1589–1593.
  • 4. Barreiro A., Guisande C., Maneiro I., Vergara A.R., Riveiro I., Iglesias P. 2007 – Zooplankton interactions with toxic phytoplankton: some implications for food web studies and algal defense strategies of feeding selectivity behaviour, toxin dilution and phytoplankton population diversity – Acta Oecol. 32: 279–290.
  • 5. Blank K., Haberman J., Haldna M. Laugaste R. 2009 – Effect of winter conditions on spring nutrient concentrations and plankton in a large shallow lake Peipsi (Estonia/Russia) – Aquat. Ecol. 43: 745–753.
  • 6. Blinova I. 2001 – Riverine load into L. Peipsi (In: Lake Peipsi: Meteorology, Hydrology, Hydrochemistry, Ed: T. Nõges) – Sulemees Publishers, Tartu, pp. 94–96.
  • 7. Carmichael W.W. 1994 – The toxins of cyanobacteria – Scientific American, 270: 64–72.
  • 8. Carpenter S.R. 2003 – Regime shifts in lake ecosystems: pattern and variation – Vol. 15. Excellence in Ecology Series, Ecology Institute, Oldendorf/Luhe, Germany, 32 pp.
  • 9. Christoffersen K. 1996 – Ecological implications of cyanobacterial toxins in aquatic food webs – J. Phycol. 35: 42–50.
  • 10. Christoffersen K., Burns C. W. 2000 – Toxic cyanobacteria in New Zealand lakes and toxicity to indigenous zooplankton – Verh. Int Ver. Limnol. 27: 3222–3225.
  • 11. Cronberg G., Annadotter H., Lawton L. A. 1999 – The occurrence of blue-green algae in Lake Ringsjön, southern Sweden, despite nutrient reduction and fish manipulation – Hydrobiologia, 404: 123–129.
  • 12. DeMott W.R., Gulati R .D., van Donk E. 2001 – Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria – Limnol. Oceanogr. 46: 2054–2060.
  • 13. Dokulil M.T., Treubner K. 2000 – Cyanobacterial dominance in lakes – Hydrobiologia, 468: 1–12.
  • 14. Downing J.A., Watson S.B., McCauley E. 2001 – Predicting cyanobacteria dominance in lakes – Can. J. Fish. Aquat. Sci. 58: 1905–1908.
  • 15. Eckmann R., Gerdeaux D., Müller R., Rösch R. 2007 – Re-oligotrophication and whitefish fisheries management – a workshop summary – Adv. Limnology, 60: 353–360.
  • 16. Ferrão-Filho S.A., Azevedo S.M. 2000 – Effects of unicellular and colonial forms of toxic Microcystis aeruginosa from laboratory cultures and natural populations on tropical cladocerans – Aquat. Ecol. 37: 23–35.
  • 17. Fulton R.S., Paerl H. 1987 – Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms – Limnol. Oceanogr. 32: 634–644.
  • 18. George D.G., Maberly, S.C., Hewitt, D.P. 2004 – The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District – Freshw. Biol. 49: 760–774.
  • 19. Gerten D., Adrian, R. 2000 – Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation – Limnol. Oceanogr. 45: 1058–1066.
  • 20. Gerten D., Adrian E. 2001 – Differences in the persistency of the North Atlantic Oscillation signal among lakes – Limnol. Oceanogr. 46: 448–455.
  • 21. Ghadouani A., Pinel-Alloul B., Prepas E.E. 2003 – Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities – Freshw. Biol. 48: 361–381.
  • 22. Gilbert J.J. 1994 – Susceptibility of planktonic rotifers to a toxic strain of Anabaena flosaquae – Limnol. Oceanogr. 39: 1286–1297.
  • 23. Gliwicz Z.M, Jawiński A., Pawlowicz M. 2004 – Cladocera densities, day-to-day variability in food selection by smelt, and the birth-rate compensation hypothesis – Hydrobiologia, 526: 171–186.
  • 24. Gulati R.D., DeMott W.R. 1997 – The role of food quality for zooplankton remarks on the state-of -the-art, perspectives and priorities – Freshw. Biol. 38: 753–768.
  • 25. Haberman J. 1971 – On the seasonal dynamics of the pelagic zooplankton of Lake PeipsiPihkva – Proc. Estonian Acad. Sci. Biol. 20: 34–47.
  • 26. Haberman J. 2001 – Zooplankton (In: Lake Peipsi: Flora and Fauna, Eds: E. Pihu, J. Haberman) – Sulemees Publishers, Tartu, pp. 50–68.
  • 27. Haberman J., Virro T., Krikmann K. 2008 - Zooplankton (In: Peipsi, Eds: J. Haberman, T. Timm, A. Raukas) – Publishing house Eesti Loodusfoto, Tartu, pp. 271–290.
  • 28. Hajnal E., Padisák J. 2008 – Analysis of longterm ecological status of L. Balaton based on the ALMOBAL phytoplankton database – Hydrobiologia, 599: 227–237.
  • 29. Haldna M., Milius A., Laugaste R., Kangur K. 2008 – Nutrients and phytoplankton in Lake Peipsi during two periods that differed in water level and temperature – Hydrobiologia, 599: 3–11.
  • 30. Ibneeva N.I. 1983 – Ispol’zovanie kormovoj bazy rybami-planktofagami Psovsko-Čudskogo ozera [Exploitation of food resources by planktophagous fishes in Lake Peipsi-Pihkva] – Sbornik nauchnykh trudov GosNIORKh, 209: 44–50 (in Russian).
  • 31. Jaani A., Klaus L., Pärn O., Raudsepp U., Zadonskaja O., Gronskaja T., Solntsev V. 2008 – Hüdroloogia [Hydrology] (In: Peipsi, Eds: J. Haberman, T. Timm, A. Raukas) - Publishing house Eesti Loodusfoto, Tartu, pp. 113–155 ( in Estonian).
  • 32. Jeppesen E., Søndergaard M., Jensen J.P. 2005 – Lake responses to reduced nutrient loading – an analysis of contemporary longterm data from 35 case studies – Freshw. Biol. 50: 1747–1771.
  • 33. Kangur A., Kangur P., Pihu E., Vaino V., Tambets M., Krause T., Kangur K. 2008 – Kalad ja kalapüük [Fishes and fishery] (In: Peipsi, Eds. J. Haberman, T. Timm, A. Raukas) – Publishing house Eesti Loodusfoto, Tartu, pp. 317–340 (in Estonian).
  • 34. Kangur K., Möls T. 2008 – Changes in spatial distribution of phosphorus and nitrogen in the large north-temperate lowland Lake Peipsi (Estonia/Russia) – Hydrobiologia, 599: 31–39.
  • 35. Kirk K.L., Gilbert J.J. 1992 – Variation in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria – Ecology, 73: 2208–2217.
  • 36. Krause T., Palm A. 2008 – Dynamics of smelt (Osmerus eperlanus) numbers in Lake Peipsi over a decade – Estonian J. Ecol. 57: 111–118.
  • 37. Köhler J., Hilt S., Adrian R., Nicklisch A., Kozerski H.P., Walz N. 2005 – Longterm response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading – Freshw. Biol. 50: 1639–1650.
  • 38. Laugaste R., Haberman J. 2005 – Seasonality of zoo- and phytoplankton in L. Peipsi as a function of weather conditions – Proc. Estonian Acad. Sci. Biol. Ecol. 54: 18–39.
  • 39. Laugaste, R., Nõges, T., Nõges, P., Jastremskij, V.V., Milius, A., Ott, I. 2001 - Algae (In: Lake Peipsi. Flora and Fauna, Eds: E. Pihu, J. Haberman) – Sulemees Publishers, Tartu, pp. 31–49.
  • 40. Leeben A., Tõnno I., Freiberg R., Lepane V., Bonningues N., Makarõtševa N., Heinsalu A., Alliksaar T. 2008 – History of anthropogenically mediated eutrophication of Lake Peipsi as revealed by the stratigraphy of fossil pigments and molecular size fractions of pore-water dissolved organic matter – Hydrobiologia, 599: 49–58.
  • 41. Levich A.P., Bulgakov N.G. 1993 – Possibility of controlling the algal community structure in the laboratory – Biology Bulletin of the Academy of Sciences of the USSR, 20: 114–123.
  • 42. Lindholm T., Vesterquist P., Spoof L., Lundberg-Niinistö C., Meriluoto J. 2003 – Microcystin occurrence in lakes in Åland, SW Finland – Hydrobiologia, 505: 129–138.
  • 43. Livingstone D.M. 1993 – Temporal structure in the deep-water of four Swiss lakes: a shortterm climatic change indicator? – Verh. Int Ver. Limnol. 25: 75–81.
  • 44. Loigu E., Iital A., Karlova S., Leisk Ü., Pachel K., Sults Ü., Trapido M., Vassiljev A., Veldre I. 1999 – Peipsi valgala reostuskoormus ja jõgede vee kvaliteet [Pollution load of the catchment of the L. Peipsi and water quality of rivers] (In: Peipsi, Eds: E. Pihu, A. Raukas) – Keskkonnaministeeriumi Info- ja Tehnokeskus, Tallinn, pp. 66–80 (in Estonian).
  • 45. Loigu E., Leisk Ü., Iital A., Pachel K. 2008 – Peipsi järve valgla reostuskoormus ja jõgede veekvaliteet [Pollution load of the catchment of the L. Peipsi and water quality of rivers] (In: Peipsi, Eds: J. Haberman, T. Timm, A. Raukas) – Publishing house Eesti Loodusfoto, Tartu, pp. 179–199 ( in Estonian).
  • 46. Milius A., Haldna M. 2008 – Hüdrokeemia [Hydrochemistry] (In: Peipsi, Eds: J. Haberman, T. Timm, A. Raukas) – Publishing house Eesti Loodusfoto, Tartu, pp. 157–178 (in Estonian).
  • 47. Milius A., L augaste R., Möls T., Haldna M., Kangur K. 2005 – Water level and water temperature as factors determining phytoplankton biomass and nutrient content in Lake Peipsi – Proc. Estonian Acad. Sci. 54: 5–17.
  • 48. Mooij, W.M., Van Tongren, O.F.R. 1990 – Growth of 0+ roach (Rutilus rutilus) in relation o temperature, body size, and food in shallow eutrophic lake: comparison of field and laboratory observations – Can. J. Fish Aquat. Sci. 47: 960–967.
  • 49. Moss B., Barker T., Stephen D., Williams A.E., Balayla D.J., Beklioglu M., Carvalho L. 2005 – Consequences of reduced nutrient loading on a lake system in a lowland catchment: deviations from the norm? – Freshw. Biol. 50: 1687–1705.
  • 50. Mäemets А.H. 1966 – O letnem zooplanktone Pskovsko-Čudskogo ozera [On summer zooplankton in Lake Peipsi-Pihkva ] – Gidrobiol. Issledovaniâ, 4: 81–95 (in Russian).
  • 51. Nandini S. 2000 – Responses of rotifers and cladocerans to Microcystis aeruginosa (Cyanophyceae): A demographic study – Aquat. Ecol. 34: 227–242.
  • 52. Nõges T., Haberman J., Kisand V., Laugaste R., Zingel P. 2001 – Trophic relations and food web structure of plankton community in Lake Peipsi s.s. (In: Lake Peipsi: Flora and Fauna, Eds: E. Pihu, J. Haberman) – Sulemees Publishers, Tartu, pp. 74–81.
  • 53. Nõges T., Haberman J., Timm M., Nõges, P. 1993 – The seasonal dynamics and trophic relations of the plankton components in Lake Peipsi (Peipus) – Int. Rev. Hydrobiol. 78: 513–519.
  • 54. Nõges T., Järvet A., Kisand A., Laugaste R., Loigu E., Skakalski B., Nõges P. 2007 – Reaction of large and shallow lakes Peipsi and Võrtsjärv to the changes of nutrient loading – Hydrobiologia, 584: 253–264.
  • 55. Nõges P., Kisand A. 1999 – Forms and mobility of sediment phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia) – Int. Rev. Hydrobiol. 84: 255–270.
  • 56. Nõges T., Nõges P. 1999 – The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake – Hydrobiologia, 408/409: 277–283.
  • 57. Nõges T., L augaste R., Loigu E., Nedogarko I., Skakalski B., Nõges P. 2005 - Is the destabilisation of Lake Peipsi ecosystem caused by increased phosphorus loading or decreased nitrogen loading? – Water Sc. Techn. 54: 267–274.
  • 58. Nõges T., L augaste R., Nõges P., Tõnno 2008 – Critical N:P ratio for cyanobacteria and N-fixing species in large shallow temperate lakes Peipsi and Võrtsjärv, North-East Europe – Hydrobiologia, 599: 77–86.
  • 59. OECD 1982 – Eutrophication of water, monitoring, assessment and control – Organization for Economic Cooperation and Development (O.E.C.D.), Paris, 150 pp.
  • 60. Padisak J., Koncsos I. 2002 – Trend and noise: long-term changes of phytoplankton in the Keszthely Basin of Lake Balaton, Hungary - Verh. Int Ver. Limnol. 28: 194–203.
  • 61. Persson A. 1997 – Effects of fish predation and excretion on the configuration of aquatic food webs – Oikos, 79: 137–146.
  • 62. Phillips G., Kelly A., Pitt J.-A., Sanderson R., Taylor E. 2005 – The recovery of a very shallow eutrophic lake, 20 years after the control of effluent derived phosphorus – Freshw. Biol. 50: 1628–1638.
  • 63. Pihu E., Kangur A. 2001 – Fishes and fisheries management (In: Lake Peipsi: Flora and Fauna, Eds: E. Pihu, J. Haberman) – Sulemees Publishers, Tartu, pp. 100–111.
  • 64. Punning J.-M., Kapanen G. 2009 – Phosphorus flux in Lake Peipsi sensu stricto, Eastern Europe – Estonian J. Ecol. 58: 3–17.
  • 65. Raspletina G. F., Susareva O. M. 2002 – Biogennye elementy [Nutrients] (In: Ozero Ladoga: Prošloe, nastoâŝee, buduŝee [Lake Ladoga. The past, present and future] Eds: V.A. Rumântsev, V.G. Drabkova) – Nauka, St. Petersburg, pp. 77–85 (in Russian).
  • 66. Reinertsen H., Langeland A. 1982 – The effect of a lake fertilization on the stability and material utilization of a limnetic ecosystem – Holarctic Ecology, 5: 311–324.
  • 67. Rivier I.K. 1993 – Sovremennoe sostoânie zooplanktona Rybinskogo vodohraniliŝa [Contemporary state of zooplankton in Rybinsk Reservoir] (In: Sovremennoe sostoânie èkosistemy Rybinskogo vodohraniliŝa [Contemporary state of ecosystem in the the Rybinsk Reservoir], Ed: A.I. Kopylov) – Gidrometeoizdat, St. Petersburg, pp. 205–232 (in Russian).
  • 68. Romo S., Villena M.-J., Sahuquillo M., Soria J. M., Giménez M., Alfonso T., Vicente E., Miracle M.R. 2005 – Response of a shallow Mediterranean lake to nutrient diversion: does it flow similar patterns as in northern shallow lakes? – Freshw. Biol. 50: 1706–1717.
  • 69. Rumâncev V.A., Drabkova V.G. 2002 – Ozero Ladoga: Prošloe, nastoyaŝee, buduŝee [Lake Ladoga. The past, present and future] - Nauka, St. Petersburg, 327 pp. (in Russian).
  • 70. Rumâncev V.A., Kondrat’ev S.A., Šmakova M.V., Basova S.L., Šilin B.V., Žuravkova O.N., Savitskaâ N.V. 2005 – Vnešnââ nagruzka na Čudsko-Pskovskij ozyornyj kompleks i ego otvetnaâ reakciâ [External nutrient load to Lake Peipsi complex and its response] – Vodnoe hozyaistvo Rossii, 7: 569–585 ( in Russian).
  • 71. Räisänen, J., Hansson, U., Ullerstig, A., Döscher, R., Graham, L.P., Jones, C., Meier, H.E. M., Samuelsson, P., Willén U. 2004 – European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios – Clim. Dyn. 22: 13 – 31.
  • 72. Scheffer M., Carpenter S., Foley J.A., Folke C., Walker B. 2001 – Catastrophic shifts in ecosystems – Nature, 413: 591–596.
  • 73. Scheffer M., Rinaldi S., Gragnani A., Mur L.R., Vannes E.H. 1997 – On the dominance of filamentous cyanobacteria in shallow, turbid lakes – Ecology, 78: 272–282.
  • 74. Sharpley A., Foy B., Whiters P. 2000 – Practical and innovative methods for control of agricultural phosphorus losses to water: an overview – J. Environ. Quality, 29: 1–9.
  • 75. Smith A.D., Gilbert J.J. 1995 – Relative susceptibility of rotifers and cladocerans to Microcystis aeruginosa – Arch. Hydrol. 132: 309–336.
  • 76. Smith P.A., Leath R.T., Eaton J.W. 1998 – A review of the current knowledge on the introduction, ecology and management of zander, Stizostedion lucioperca, in the UK (In: Socking and introduction of fish, Ed: I.G. Cowx) – Fishing News, University of Hull, UK: 209–224.
  • 77. Søndergaard M., Jensen J.P., Jeppesen E. 2005 – Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes - Freshw. Biol. 50: 1605–1615.
  • 78. Stålnacke P., Sults Ü., Vasiliev A., Skakalsky B., Botina A., Roll G., Pachel K., Maltsman T. 2002 – An assessment of riverine loads of nutrients to Lake Peipsi, 1995 - 1998 – Arch. Hydrol. 141: 437–457.
  • 79. Starast H., Milius A., Möls T., Lindpere A. 2001 – Hydrochemistry of Lake Peipsi (In: Lake Peipsi: Meteorology, Hydrology, Hydrochemistry, Ed: T. Nõges) – Sulemees Publishers, Tartu, pp. 97–131.
  • 80. Sults Ü., Jaani A. 2000 – Hydrological peculiarities and ecological situations of L. Peipsi (In: Nordic Hydrological Conference 2000. Vol. 1. Nordic Association for Hydrology, Uppsala, Sweden, 26–30 June 2000. Nordic Hydrological Programme Report no. 46, Ed: T. Nilsson) – Nordic Association for Hydrology, Uppsala, pp. 185–190.
  • 81. Tanner R., Kangur K., Spoof L., Meriluoto J. 2005 – Hepatotoxic cyanobacterial peptides in Estonian fresh water bodies and inshore marine water – Proc. Estonian Acad. Sci. Biol. Ecol. 54: 40–52.
  • 82. Thorstrup L., Christoffersen K. 1999 – Accumulation of microcystin in Daphnia magna feeding on toxic Microcystis – Archiv Hydrobiol. 145: 447–467.
  • 83. Van Donk E., Lürling M., Hessen D.O., Lokhorst G.M. 1997 – Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers – Limnol. Oceanogr. 42: 357–364.
  • 84. Varis O. 1992 – Typpi, fosfori ja jarvien sinilevaongelmat [Nitrogen, phosphorous and cyanobacterial blooms] – Vesitalous, 33: 12–21.
  • 85. Voloshko L., Kopecky J., Safronova T., Pljusch A., Titova N., Hrouzek P., Drabkova V. 2008 – Toxins and other bioactive compounds produced by cyanobacteria in Lake Ladoga – Estonian J. Ecol. 57: 100–110.
  • 86. Von Elert E. 2004 – Food quality constraints in Daphnia: interspecific differences in the response to the absence of a long chain polyunsaturated fatty acid in the food source - Hydrobiologia, 526: 187–196.
  • 87. Von Elert E., Wolffrom T. 2001 – Supplementation of cyanobacterial food with polyunsaturated fatty acids does not improve growth of Daphnia – Limnol. Oceanogr. 46: 1552–1558.
  • 88. Vrede T., Ballantyne A., Mille-Lindblom C., Algesten G., Gudasz C., Lindahl S., Brunberg A.C. 2009 – Effects on N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake – Freshw. Biol. 54: 331–344.
  • 89. Wang H.-J., Liang X.-M., Jiang P.-H., Wu S.-K., Wang H.-Z. 2008 – TN:TP ratio and planktivorous fish do not affect nutrient-chlorophyll relationships in shallow lakes – Freshw. Biol. 53: 935–944.
  • 90. Watanabe M.F., Park H., Nakajima T. 2000 – Composition of Microcystis and microcystins in Lake Biwa – Verh. Int. Ver. Limnol. 27: 2899–2903.
  • 91. Wilander A., Persson G. 2001 – Recovery from eutrophication: experiences of reduced phosphorus input to the four largest lakes of Sweden – Ambio, 30: 475–485.
  • 92. Wilson A.E., Sarnelle O., Tillmanns A.R. 2006 – Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: metaanalyses of laboratory experiments – Limnol. Oceanogr. 51: 1915–1924.
  • 93. Wojtal A., Frankiewicz P., Izydorczyk K., Zalewski M. 2003 – Horizontal migration of zooplankton in a littoral zone of the lowland Sulejow Reservoir (Central Poland) – Hydrobiologia, 506–509: 339–346.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3178-2295
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.