PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multifractal properties of large bubble paths in a single bubble column

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the paths of bubbles emitted from the brass nozzle with inner diameter equal to 1.6 mm have been analyzed. The mean frequency of bubble departure was in the range from 2 to 65.1 Hz. Bubble paths have been recorded using a high speed camera. The image analysis technique has been used to obtain the bubble paths for different mean frequencies of bubble departures. The multifractal analysis (WTMM - wavelet transform modulus maxima methodology) has been used to investigate the properties of bubble paths. It has been shown that bubble paths are the multifractals and the influence of previously departing bubbles on bubble trajectory is significant for bubble departure frequency f[b] > 30 Hz.
Twórcy
autor
  • Bialystok Technical University, Faculty of Mechanical Engineering, Wiejska 45C, 15-351 Białystok, Poland, r.mosdorf@pb.edu.pl
Bibliografia
  • [1] LUEWISUTTHICHAT W., TSUTSUMI A., YOSHIDA K.; Chaotic hydrodynamics of continuous single-bubble flow system. Chemical Engng Sc. 52(1997), 3685-3691.
  • [2] MOSDORF R., SHOJI M.: Chaos in bubbling | nonlinear analysis and modelling. Chemical Engng Sc. 58(2003), 3837-3846.
  • [3] ZHANG L., SHOJI M.: Aperiodic bubble formation from submerged orifice. Chemical Engng Sc. 56(2001), 5371-5381.
  • [4] KIKUCHI r., et al.: Diagnosis of chaotic dynamics of bubble motion in a bubble column. Chemical Engng Sc. 52(1997), 3741-3745.
  • [5] FEMAT R., RAMIREZ J.A., SORIA A.: Chaotic flow structure in a vertical bubble column. Physics Letters A 248(1998), 67-79.
  • [6] VAZQUEZ A., MANASSEH R., SÁNCHEZ R.M., METCALFE G.: Experimental comparison between acoustic and pressure signals from a bubbling flow. Chemical Engineering Science 63(2008), 586-5869.
  • [7] ZENIT R., MAGNAUDET J.: Measurements of the streamwise vorticity in the wake of an oscillating bubble. International Journal of Multiphase Flo 35(2009), 195-203.
  • [8] HEDENGREN K.H.: Decomposition of edge operators. Proc. 9th International Conference on Pattern Recognition, Vol. 2, 14-17 Nov. 1988, 963-965.
  • [9] SHEW W.L., PINTON J.F.: Dynamical model of bubble path instability. Physical Review Letters PRL 97(2006) 144508.
  • [10] PEEBLES F.N., GARBER H.J.: Studies on the motion of gas bubbles in liquids. Chem. Engng Progr. 49(1953), 88-97.
  • [11] HUGHES R.R., et al.: The formation of bubbles at simple orifices. Chem. Engng Progr. 51(1955), 557-563.
  • [12] DAVIDSON L., AMICK E.: Formation of gas bubbles at horizontal orifices. AIChE J. 2(1956), 337-342.
  • [13] KLING G.: Über die Dynamik der Blasenbildung beim Begasen von Flüssigkeiten unter Druck. Int J. Heat Mass Transfer 5(1962), 211-223.
  • [14] MCCANN D.J., PRINC R.G.H.: Regimes of bubbling at a submerged orifice. Chemical Engng Sc. 26(1971), 1505-1512.
  • [15] KYRIAKIDES N.K., KASTRINAKIS E.G., NYCHAS S.G.: Bubbling from nozzles submerged in water: transitions between bubbling regimes. Canadian J. Chemical Engng 75(1997), 685-691.
  • [16] DAVIDSON J.F., SCHÜLER B.O.G.: Bubble formation at an orifice in an inviscid liquid. Trans. Instn. Chem. Engrs 38(1960), 335-345.
  • [17] ZUN I., GROSELJ J.: The structure of bubble non-equilibrium movement in free-rise and agitated-rise condition. Nuclear Engineering and Design 163(1996), 99-115.
  • [18] BRENN G., KOLOBARIC V., DURST F.: Shape oscillations and path transition of bubbles rising in a model bubble column. Chemical Engineering Science 61(2006), 3795-3805.
  • [19] SANADA T., SATO A., SHIROTA M., WATANABE M.: Motion and coalescence of a pair of bubbles rising side by side. Chemical Engineering Science 64(2009), 2659-2671.
  • [20] SANADA T., WATANABE M., FUKANO T., KARIYASAKI A.: Behavior of a single coherent gas bubble chain and surrounding liquid jet flow structure. Chemical Engineering Science 60(2005), 4886-4900.
  • [21] LIU ZL., ZHENG Y.: PIV study of bubble rising behavior. Powder Technology 168(2006), 10-20.
  • [22] AUGUSTE F., FABRE D., MAGNAUDET J.: Bifurcations in the wake of a thick circular disk. Theor. Comput. Fluid Dyn. 24(2010), 302-313.
  • [23] FABRE D., AUGUSTE F., MAGNAUDET J.: Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20(2008) 051702.
  • [24] ERN P., RISSON F., FERNANDES P.C., MAGNAUDET J.: Dynamical model for the buoyancy-driven zigzag motion of oblate bodies. Physical Review Letters, PRL 102 (2009) 134505.
  • [25] MUZY J.F., et al.: The multifractal formalism revisited with wavelets. International Journal of Bifurcation and Chaos 4(1994), 245-302.
  • [26] ENESCU B., ITO K., STRUZIK Z.R.: Wavelet-based multiscale resolution analysis of real and simulated time-series of earthquake. Geophys. J. Int. 164(2006), 63-74.
  • [27] STRUZIK Z.R.: Determining local singularity strengths and their spectra with the wavelet transform. Fractals 8(2000), 163-179.
  • [28] MUZY J.F., et al.: The multifractal formalism revisited with wavelets. International Journal of Bifurcation and Chaos 4(1994), 245-302.
  • [29] MALLAT S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego 1998.
  • [30] http://www.cmap.polytechnique.fr/~bacry/LastWave/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3178-2231
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.