PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Membrane separation of carbon dioxide in the integrated gasification combined cycle systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Integrated gasification combined cycle systems (IGCC) are becoming more popular because of the characteristics, by which they are characterized, including low pollutants emissions, relatively high efficiency of electricity production and the ability to integrate the installation of carbon capture and storage (CCS). Currently, the most frequently used CO2 capture technology in IGCC systems is based on the absorption process. This method causes a significant increase of the internal load and decreases the efficiency of the entire system. It is therefore necessary to look for new methods of carbon dioxide capture. The authors of the present paper propose the use of membrane separation. The paper reviews available membranes for use in IGCC systems, indicates, inter alia, possible places of their implementation in the system and the required operation parameters. Attention is drawn to the most important parameters of membranes (among other selectivity and permeability) influencing the cost and performance of the whole installation. Numerical model of a membrane was used, among others, to analyze the influence of the basic parameters of the selected membranes on the purity and recovery ratio of the obtained permeate, as well as to determine the energetic cost of the use of membranes for the CO2 separation in IGCC systems. The calculations were made within the environment of the commercial package Aspen Plus. For the calculations both, membranes selective for carbon dioxide and membranes selective for hydrogen were used. Properly selected pressure before and after membrane module allowed for minimization of energy input on CCS installation assuring high purity and recovery ratio of separated gas.
Słowa kluczowe
Rocznik
Strony
145--164
Opis fizyczny
Bibliogr. 23 poz.,Rys., wz.,
Twórcy
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100 Gliwice, Poland, Anna.Skorek@polsl.pl
Bibliografia
  • [1] Grainger D., Hagg M.B.: Techno-economic evaluation of a PVAm CO2-selective membrane in an IGCC power plant with CO2 capture. Fuel 87 (2008), 14–24.
  • [2] Pesiri D., Jorgensen B., Dye R.: Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, a carbon dioxide. Journal of Membrane Science 218 (2003), 11-18.
  • [3] Skorek-Osikowska A., Kotowicz J.: Purification technologies in the integrated gasification combined cycle (IGCC) installations - review and outlook. Power engineering and environment 2009. Ostrava, 7-8 September 2009, 67–72.
  • [4] Ściążko M., Chmielniak T.: The pronciples of operation and constructions of generators for coal gasification for IGCC systems. Conference on Development Strategies for Energy Conversion Machinery and Systems in Power Engineering. The Energy Problems Committee of the Polish Academy of Sciences & The Institute of Power Engineering and Turbomachinery of the Silesian University of Technology, Gliwice 2009 (in Polish).
  • [5] Marano J., Ciferino J.: Integration of gas separation membranes with IGCC identifying the right membrane for the right Job. Energy Procedia 1 (2008), 361-368.
  • [6] Thambimuthu K.V.: Gas cleaning for advanced coal-based power generation. IEACR/53. March 1993. IEA Coal Research, London.
  • [7] IPCC: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, B Metz, et al. (eds.). Cambridge University Press, Cambridge - New York 2005, 442.
  • [8] Maurstad O.: An overview of coal based Integrated Gasification Combined Cycle (IGCC) Technology. September 2005. MIT LFEE 2005-002 WP.
  • [9] Ratafia-Brown J. et al.: Major Environmental aspects of gasification-based power generation technologies. National Energy Technology Laboratory U.S. Department of Energy. December 2002.
  • [10] Kanniche M., Gros-Bonnivard R. et al.: Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering, 2009.
  • [11] Kaldis S.P. , Skodras G., Sakellaropoulos G.P.: Energy and capital cost analysis of CO2 capture in coal IGCC processes via gas separation membranes. Fuel Processing Technology 85 (2004) 337-346.
  • [12] Bodzek M., Bohdziewicz J., Konieczny K.: Membranes Technologies in Enviromental Protection. Wydawnictwo Politechniki Śląskiej, Gliwice 1997 (in Polish).
  • [13] Gasification World Database2007 - Current Industry Status. Robust Growth Forecast. Department of Energy USA, National Energy Technology Laboratory, October. 2007. www.netl.doe.gov
  • [14] Kotowicz J., Janusz K.: The Basis of the membrane gases separation. Rynek Energii 73 (2007)6, 29-35 (in Polish).
  • [15] Krishnan G., Steele D., O’Brien K., et al.: Simulation of a process to capture CO2 from IGCC syngas using a high temperature PBI membrane. Energy Procedia 1 (2009), 4080-4088.
  • [16] Rezvani S., Huang Y., McIlveen-Wright D., et al.: Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping. Fuel 88 (2009), 2463-2472.
  • [17] Carbon Capture and Storage: Meeting the Financing Challenge. Presentation to: Workshop on Carbon Capture and Storage Financing Challenges and Opportunities. London, September 2008.
  • [18] Kaldis S.P., Skodras G., Sakellaropoulos G.P.: Energy and capital cost analysis of CO2 capture in coal IGCC processes via gas separation membranes. Fuel Processing Technology 85(2004), 337-346.
  • [19] Lee D., Zhang L., Oyama S., Niu S., Saraf R.: Synthesis, characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina. Journal of Membrane Science 231 (2004), 117-126.
  • [20] Bednarska A.: European plans for improvement of the energy efficiency. Web sides of URE: www.ure.gov.pl, 2008 (in Polish).
  • [21] Directive of the European Parliament and the Council 2009/29/WE of 23 April 2009 amending directive 2003/87/WE in order to improve and extend the European system of greenhouse gas emission allowances trade. Official Journal of the European Union, L 140/63.
  • [22] Davidson J, Thambimuthu K.: Technologies for capture of carbon dioxide. Proceedings of the Seventh Greenhouse Gas Technology Conference, Vancouver, International Energy Association (IEA), Greenhouse Gas R&D Programme, 2004.
  • [23] Kotowicz J., Chmielniak T., Janusz-Szymańska K.: The influence of membrane CO2 separation on the efficiency of a coal-fired power plant. Energy 35 (2010), 841-850.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2913-1513
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.