PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interrelations among con-generic and co-occurring tree species : asymmetric hybridization and the high success of Quercus petraea (Matt.) Liebl. regeneration in mixed Q. petraea/Q. robur L. stands

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybridisation and introgression are expected to be common in plant populations composed of various species of the same genera. These processes, however, frequently have one direction or are asymmetric, when one of hybridising species is a donor and other recipient of pollen. The asymmetric hybridisation may be also an important manner of migration by pollen. According to the theory of asymmetric hybridisation in mixed oak populations of European white oaks (Quercus robur and Q. petraea) the number of hybrid saplings should be higher under a canopy of Q. robur than under Q. petraea trees. The aim of this study was to determine, which of the two species in the mixed populations has a greater degree of success in regeneration and colonization, measured by the proportion and density of saplings and young individuals higher than 0.3 m. The taxonomic composition of saplings under the crown ranges of trees was analyzed on the basis of morphological characters of leaves in two distantly located mixed oak stands in Poland, in Jamy and Legnica Forests, where young generation to about 17-18 years old was observed under canopy of 125-140 years old mother trees. The first population is located about 100 km of Q. petraea geographic range and covers area of 6 km, the second about 500 km of Q. petraea range and covers more than 10 hectares. The density of 60 and 134 adult trees per hectare, were found in analysed populations, respectively. A significantly higher proportions of Q. petraea than Q. robur saplings were found in both compared stands. A hybrid saplings proportion were higher than hybrid adult trees. The hybrid saplings were observed more frequently under canopy of Q. robur only in the stand closer to the range of Q. petrea. Gene flow from Q. petraea to Q. robur by cross-pollination was found to be likely. The number of hybrid saplings found under crown projections of Q. petraea trees in both populations suggested also reverse gene flow, at least in the stand located close to the north-eastern limit of the Q. petraea range. A higher regeneration success of Q. petraea was observed in both stands suggesting expansion of this species.
Rocznik
Strony
273--283
Opis fizyczny
Bibliogr. 64 poz.,Rys., tab., wykr.,
Twórcy
autor
autor
autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland, borata@man.poznan.pl
Bibliografia
  • 1. Aas G. 1993 – Taxonomical impact of morphological variation in Quercus robur and Q. petraea: a contribution to the hybrid controversy - Ann. Sci. For. 50 (Suppl. 1): 107–113.
  • 2. Anderson E., Stebbins G.L., Jr. 1954 – Hybridisation as an evolutionary stimules – Evolution, 8: 378–388.
  • 3. Arnold M.L. 1997 – Natural hybridization and evolution – Oxford University Press, Oxford, 232 pp.
  • 4. Arnold M.L., Kentner E.K., Johnston J.A., Cornman S., Bouck A.C. 2001 – Natural hybridization and fitness – Taxon, 50: 93–104.
  • 5. Bacilieri R., Ducousso A., Kremer A. 1995 – Genetic, morphological, ecological and phenological differentiation between Quercus petraea (Matt.) Liebl. and Quercus robur L. in a mixed stand of Northwest France – Silvae Genet. 44: 1–10.
  • 6. Bacilieri R., Ducousso A., Petit R.J., Kremer A. 1996 – Mating system and asymmetric hybridization in a mixed stand of European oaks – Evolution, 50: 900–908.
  • 7. Bodénès C., Joandet S., Laigret F., Kremer A. 1997 – Detection of genomic regions differentiating two closely related oak species Quercus petraea (Matt.) Liebl. and Quercus robur L. – Heredity, 78: 433–444.
  • 8. Boratyńska K., Filipak M., Boratyński A. 2006 – Budowa morfologiczna i zmienność [Morphological characteristics and variability] (In: Dęby, Nasze Drzewa Leśne 11 [Our forest trees 11], Ed: W. Bugała) – Bogucki Wydawnictwo Naukowe, Kórnik-Poznań, pp. 63–85.
  • 9. Boratyński A., Sztajnborn K. 2001 – Dębowe drzewostany nasienne w Nadleśnictwie Runowo [Oak seed stands of Runowo Forest District] – Sylwan, 145: 43–51.
  • 10. Boratyński A., Boratyńska K., Filipiak M. 2006 – Systematyka i geograficzne rozmieszczenie [Systematics and geographical distribution] (In: Dęby. Nasze drzewa leśne 11 [Our forest trees 11], Ed: W. Bugała) – Bogucki Wydawnictwo Naukowe, Kórnik-Poznań, pp. 85–114.
  • 11. Boratyński A., Marcysiak K., Lewandowska A., Jasińska A., Iszkuło G., Burczyk J. 2008 – Differences in leaf morphology between Quercus petraea and Q. robur adult and young individuals – Silva Fennica, 42: 115–124.
  • 12. Bossema I. 1979 – Jays and oaks: and eco-ethological study of symbiosis – Behaviour, 70: 1–117.
  • 13. Brewer S., Cheddadi R., Beaulieu J.L., de Reille M. 2002 – The spread of deciduous Quercus throughout Europe since the last glacial period – For. Ecol. Manage. 156: 27–48.
  • 14. Brewer S., Hély-Alleaume C., Cheddadi R., de Beaulieu J.L., Laurent J-M., de Cuziat J. 2005 – Postgalcial history of Atlantic oakwoods: context, dynamics and controlling factors – Bot. J. Scotland, 57: 41–57.
  • 15. Chybicki I. 2006 – Przepływ genów w naturalnych odnowieniach sosny zwyczajnej (Pinus sylvestris L.) oraz dębu szypułkowego (Quercus robur L.) i bezszypułkowego (Quercus petraea (Matt.) Liebl.) [Gene flow in the self-sowing regenerations of Pinus sylvestris and Quercus robur and Quercus petraea] – Ph.D. thesis, University of Kazimierz Wielki, Bydgoszcz, 202 pp. (in Polish).
  • 16. Csaikl U.M., Glaz I., Baliuckas V., Petit R.J., Jensen J.S. 2002 – Chloroplast DNA variation of white oak in the Baltic countries and Poland – For. Ecol. Manage, 156: 211–222.
  • 17. Danielewicz W. 2008 – Ekologiczne uwarunkowania zasięgów drzew i krzewów na aluwialnych obszarach doliny Odry [Ecological determinants of the range of trees and shrubs in the alluvial areas of the Oder valley] – Wydawnictwo Uniwersytetu Przyrodniczego, Poznań, 264 pp. (in Polish).
  • 18. Danielewicz W., Pawlaczyk P. 2006 – Rola dębów w strukturze i funkcjonowaniu fitocenoz [Role of the oaks in the structure and function of the phytocoenoses] (In: Dęby. Nasze Drzewa Leśne 11 [Our forest trees 11], Ed: W. Bugała) – Bogucki Wydawnictwo Naukowe, Kórnik-Poznań, pp. 474–564.
  • 19. Dumolin-Lapegue S., Demesure B., Fineschi S., Le Corre V., Petit R.J. 1997 - Phylogeographic structure of white oaks throughout the European continent – Genetics, 146: 1475–1487.
  • 20. Finkeldey R. 2001 – Genetic variation of oaks (Quercus ssp.) in Switzerland - 2. Genetic structure in “pure” and “mixed” forests of pedunculate oak (Q. robur L.) and sessile oak (Q. petraea (Matt.) Liebl.) – Silvae Genet. 50: 22–30.
  • 21. Forest I.I., Polley H.W., Wilsey B.J. 2009 - Species interaction mechanisms maintain plant species diversity – Ecology, 90: 1821–1830.
  • 22. Getzin S., Wiegand T., Wiegand K., He F. 2008 – Heterogenity influences spatial patterns and demographics in forest stands – J. Ecol. 96: 807–820.
  • 23. Giesecke T. 2005 – Holocene dynamics of the southern boreal forest in Sweden – Holocene, 15: 858–872.
  • 24. Gotmark F., Fridman J., Kempe G., Norden B. 2005 – Broadleaved tree species in conifer-dominated forestry: Regeneration and limitation of saplings in southern Sweden – For. Ecol. Manage. 214: 142–157.
  • 25. Grivet D., Smouse P.E., Stork V.L. 2005 – A novel approach to an old problem: tracking dispersed seeds – Mol. Ecol. 14: 3585–3595.
  • 26. Groß D. 1933 – Die Traubeneiche (Quercus sessiliflora Salisb.) in Ostpreussen – Zeitschr. Forst. Jagdw. 65: 144–152.
  • 27. Gugerli F., Walser J.C., Dounavi K., Holderegger R., Finkeldey R. 2007 – Coincidence of small-scale spatial discontinuities in leaf morphology and nuclear microsatellite variation of Quercus petraea and Q. robur in a mixed forest – Ann. Bot. 99: 713–722.
  • 28. Harmer R. 2001 – The effect of plant competition and simulated summer browsing by deer on tree regeneration – J. Appl. Ecol. 38: 1094–1103.
  • 29. Hultén E. 1950 – Atlas over växternas utbredning i Norden – Generalstabens Litografiska Anstalts Förlag, Stockholm, 512 pp.
  • 30. Humphrey J.W., Swaine M.D. 1997 – Factors affecting natural regeneration of Quercus in Scottish oakwoods. 1. Competition from Pteridium aquilinum – J. Appl. Ecol. 34: 577–584.
  • 31. Ietswaart J.H., Feij A.E. 1989 – A multivariate analysis of introgression between Quercus robur and Q. petraea in the Netherlands – Acta Bot. Neerland. 38: 313–325.
  • 32. Jensen J.S., Olrik D.C., Siegismund H.R., Lowe A.J. 2003 – Population genetics and spatial autocorrelation in an unmanaged stand of Quercus petraea in Denmark – Scand. J. For. Res. 18: 295–304.
  • 33. Kelleher C.T., Hodkinson T.R., Douglas G.C., Kelly D.L. 2005 – Species distinction in Irish populations of Quercus petraea and Q. robur: Morphological versus molecular analyses - Ann. Bot. 96: 1237–1246.
  • 34. Kollmann J., Schill H.P. 1996 – Spatial patterns of dispersal, seed predation and germination during colonization of abandoned grassland by Quercus petraea and Corylus avellana - Vegetatio, 125: 193–205.
  • 35. Kremer A., Dupouey J.L., Deans J.D., Cottrell J., Csaikl U., Finkeldey R., Espinel S., Jensen J., Kleinschmit J., Van Dam B., Ducousso A., Forrest I., de Heredia U.L, Lowe A.J., Tutkova M., Munro R.C., Steinhoff S., Badeau V. 2002 – Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands – Ann. For. Sci. 59: 777–787.
  • 36. Kriebitzsch W.U., von Oheimb G., Ellenberg H., Engelschall B., Heuveldop J. 2000 – Development of woody plant species in fenced and unfenced plots in deciduous forests on soils of the last glaciation in northernmost Germany – Allg. Forst-. Jagdzeit. 171: 1–10.
  • 37. Kuiters A.T., Slim P.A. 2002 – Regeneration of mixed deciduous forest in Dutch forestheathland, following a reduction of ungulate densities – Biol. Conserv. 105: 65–74.
  • 38. Lepais O., Petit R. J., Guichoux E., Lavabre J. E., Alberto F., Kremer A., Gerber S. 2009 – Species relative abundance and direction of introgression in oaks – Mol. Ecol. 18: 2228–2242.
  • 39. Lesiak M., Obidowicz A. 2006 – Dęby w historii naszych lasów [Oaks in the history of the forests] (In: Dęby. Nasze drzewa Leśne 11 [Oaks. Our forest trees 11], Ed: W. Bugała) – Bogucki Wydawnictwo Naukowe, Kórnik-Poznań, pp. 7–18 (in Polish).
  • 40. Lexer C., Kremer A., Petit R.J. 2006 – Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism – Mol. Ecol. 15: 2007–2012.
  • 41. Lowe A., Unsworth C., Gerber S., Davies S., Munro R., Kelleher C., King A., Brewer S., White A., Cottrell J. 2005 – Route, speed and mode of oak postglacial colonization across the British Isles: integrating molecular ecology, palaeoecology and modeling approaches – Bot. J. Scotland. 57: 59–81.
  • 42. Lupke B. von 1998 – Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species – For. Ecol. Manage. 106: 19–26.
  • 43. Milecka K., Kupryjanowcz M., Makohonienko M., Okuniewska-Nowaczyk I., Nalepka D. 2004 – Quercus L. – Oak (In: Late glacial and holocene history of vegetation in Poland based on isopollen maps, Ed: M. Ralska-Jasiewiczowa) – Wyd. Szafer Institute of Botany, Kraków, pp. 189–197.
  • 44. Modrzyński J., Robakowski P., Zientarski J. 2006 – Zarys ekologii [Outline of ecology] (In: Dęby. Nasze Drzewa Leśne 11 [Oaks. Our forest trees 11], Ed: W. Bugała) – Bogucki Wydawnictwo Naukowe, Kórnik-Poznań, pp. 410–474 (in Polish).
  • 45. Mosandl R., Kleinert A. 1998 – Development of oaks (Quercus petraea (Matt.) Liebl.) emerged from bird-dispersed seeds under oldgrowth pine (Pinus silvestris L.) stands – For. Ecol. Manage. 106: 35–44.
  • 46. Muir G., Schlötterer C. 2005 – Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus sp.) – Mol. Ecol. 14: 549–561.
  • 47. Muir G., Schlötterer C. 2006 – Moving beyond single-locus studies to characterize hybridization between oaks (Quercus spp.) – Mol. Ecol. 15: 2301–2304.
  • 48. Olrik D.C., Kjaer E.D. 2007 – The reproductive success of a Quercus petraea × Q. robur F1-hybrid in back-crossing situations – Ann. For. Sci. 64: 37–45.
  • 49. Ostrolucká M.G., Bolvanský M. 1992 – Umelá hybridizácia druhov rodu Quercus [Artificial cross-pollination of Quercus species] – Lesnický Časopis, 38: 239–251.
  • 50. Paczoski J. 1930 – Lasy Białowieży [Forests of Białowieża] – Państwowa Rada Ochrony Przyrody, Monografie Naukowe 1, Poznań, pp. 2–575 (in Polish).
  • 51. Petit R.J. 2004 – Biological invasions at the gene level – Divers. Distrib. 10: 159–165.
  • 52. Petit R.J., Bodénès C., Ducousso A., Roussel G., Kremer A. 2004 – Hybridization as a mechanism of invasion in oaks – New Phytol. 161: 151–164.
  • 53. Petit R.J., Wagner D.B., Kremer A. 1993 - Ribosomal DNA and Chloroplast DNA Polymorphisms in a mixed stand of Quercus robur and Quercus petraea – Ann. Sci. For. 50 (Suppl. 1): 41–47.
  • 54. Ponton S., Dupouey J.-L., Dreyer E. 2004 - Leaf morphology as species indicator in seedlings of Quercus robur L., and Q. petraea (Matt.) Liebl.: modulation by irradiance and growth flush – Ann. For. Sci. 61: 73–80.
  • 55. Post L. von 1924 – Some features of the regional history of the forests of Southwestern Sweden in post-Arctic time – Förhandlingar; Geologiska Föreningen i Stockholm 46: 83–128.
  • 56. Rozas V. 2003 – Regeneration patterns, dendroecology, and forest use history in an oldgrowth beech-oak lowland forest in Northern Spain – For. Ecol. Manage. 182: 175–194.
  • 57. Rushton B.S. 1977 – Artificial hybridization between Quercus robur L. and Quercus petraea (Matt.) Liebl. – Watsonia, 11: 229–236.
  • 58. Rushton B.S. 1993 – Natural hybridization within the genus Quercus L. – Ann. Sci. For. 50 (Suppl. 1): 73–90.
  • 59. Sokal R.S., Rohlf F.J. 2003 – Biometry, 3rd edn, 8th printing – W.H. Freeman and Co., New York, US, 887 pp.
  • 60. Steinhoff S. 1998 – Kontrollierte Kreuzungen zwischen Stiel- und Traubeneiche: Ergebnisse und Folgerungen – Allg. Forst-. Jagdzeit. 169: 163–168.
  • 61. Suszka B. 2006 – Rozmnażanie generatywne [Generative reproduction] (In: Dęby. Nasze drzewa leśne 11 [Oaks, Our forest trees 11], Ed: W. Bugała) – Bogucki Wydawnictwo Naukowe, Kórnik-Poznań, pp. 305–389 (in Polish).
  • 62. Webb S.L. 1986 – Potential role of passenger pigeons and other vertebrates in rapid Holocene migration of nut trees – Quaternary Res. 26: 367–375.
  • 63. Welander N.T., Ottosson B. 2000 – The influence of low light, drought and fertilization on transpiration and growth in young seedlings of Quercus robur L. – For. Ecol. Manage. 127: 139–151.
  • 64. Wachowiak W., Celiński K., Prus-Głowacki W. 2005 – Evidence of natural reciprocal hybridisation between Pinus uliginosa and P. sylvestris in the sympatric population of the species – Flora, 200: 563–568.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2912-1488
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.