PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Hurst exponent as a tool for the description of magma field heterogeneity reflected in the geochemistry of growing crystals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Trace element behaviour during crystallization of three alkali feldspar crystals of mixed origin was investigated. The first crystal (gm1) was growing under an intensive magma mixing regime in an active region of an inhomogeneous magmatic field. The second crystal (ref) was growing in a coherent region of this field and the third one (gm2) was growing under moderate progress in magma mixing, with the process being close to completion. The Hurst exponent (H) was used as a tool for the description of the local heterogeneities of the magma field during the mixing process. Values of H were calculated for compatible trace element patterns along each traverse for each crystal. The gm1 crystal is strongly zoned. The value of the Hurst exponent (H) for zones reflecting intensive chemical mixing varies between 0.06 and 0.47. It emphasizes strong anti-persistent behaviour of elements during crystallization. The zones that grew in a slightly contaminated felsic magma exhibit H > 0.5. It means that the process goes over a longer path than a random walk and shows increasing persistence in element behaviour with decreasing hybridization. Similarly, zones crystallized in magma regions compositionally located close to coherent characteristic or in active domains featuring a high homogenization (crystals gm2, ref) show higher H values.
Rocznik
Strony
437--443
Opis fizyczny
Bibliogr. 22,Rys., tab.,
Twórcy
autor
autor
  • Institute of Hydrogeology and Engineering Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland, adomonik@uw.edu.pl
Bibliografia
  • 1. Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 17, 549–560.
  • 2. Hastings, H.M. and Sugihara G. 1993. Fractals: A Users Guide for the Natural Sciences, pp. 1–248. Oxford University Press; Oxford.
  • 3. Hoskin, P.W.O. 2000. Patterns of chaos: Fractal statistics and the oscillatory chemistry of zircon. Geochimica et Cosmochimica Acta, 64, 1905–1923.
  • 4. Hurst, H.E. 1951. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770−808.
  • 5. Hurst, H.E., Black, R.P. and Simaika, Y.M. 1965. Long-term storage: an experimental study, pp. 1–146. Constable; London.
  • 6. Mandelbrot, B. 1977. Fractals: Form, Chance and Dimension, pp. 1–365. W.H. Freeman & Co.; San Francisco.
  • 7. Mandelbrot, B. 1982. The Fractal Geometry of Nature, pp. 1–468. W.H. Freeman & Co.; San Francisco.
  • 8. Mandelbrot, B. 1997. Fractal and scaling in finance, pp. 1–551. Springer Verlag; New York.
  • 9. Peitgen, H.O., Jurgens, H. and Saute, D. 2002. Granice Chaosu: Fraktale, pp. 1–556. PWN; Warszawa.
  • 10. Perugini, D., Poli, G. and Gatta, G.D. 2002. Analysis and simulation of magma mixing processes in 3D. Lithos, 65, 313–330.
  • 11. Perugini, D., Poli, G. and Mazzuoli, R. 2003. Chaotic advection, fractals and diffusion during mixing of magmas: evidence from lava flows. Journal of Volcanology and Geothermal Research, 124, 255–279.
  • 12. Perugini, D., Poli, G. and Valentini, L. 2005. Strange attractors in plagioclase oscillatory zoning: petrological implications. Contribution to Mineralogy and Petrology, 149, 482–497.
  • 13. Peters, E.E. 1994. Fractal Market Analysis, pp. 1–315. Wiley & Sons Inc.; New York.
  • 14. Peters, E.E. 1997. Teoria chaosu a rynki kapitałowe. Nowe spojrzenie na cykle, ceny i ryzyko, pp. 1–280. WIG-Press; Warszawa.
  • 15. Słaby, E. and Götze, J. 2004. Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modelling – a case study from the Karkonosze pluton (SW Poland). Mineralogical Magazine, 68, 541–557.
  • 16. Słaby, E., Galbarczyk-Gąsiorowska, L., Seltmann, R. and Müller, A. 2007a. Alkali feldspar megacryst growth: geochemical modelling. Mineralogy and Petrology, 68, 1–29.
  • 17. Słaby, E., Seltmann, R., Kober, B., Müller, A., Galbarczyk-Gąsiorowska, L. and Jeffries, T. 2007b. LREE distribution patterns in zoned alkali feldspar megacrysts – implication for parental melt composition. Mineralogical Magazine, 71, 193–217.
  • 18. Słaby, E., Ggötze, J., Wörner, G., Simon, K., Wrzalik, R. and Śmigielski, M. 2008. K-feldspar phenocrysts in microgranular magmatic enclaves: A cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. Lithos, 105, 85–97.
  • 19. Smoluchowski, M. 1906. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Annalen der Physik, 21, 756–780.
  • 20. West, B.J. 1990. Fractal physiology and chaos in medicine. World Scientific; Singapore.
  • 21. Wiener, N. 1923. Differential space. Journal of Mathematical Physics, 2, 131–174.
  • 22. Yang Z.Y. and Lo S.C. 1997. An Index for Describing the Anisotropy of Joint Surfaces. International Journal of Rock Mechanics and Mining Sciences, 34, 1031–1044.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2912-1480
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.