PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Invariant allometric relationship between aboveand below-ground biomass along a moisture gradient in North-West China

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biomass allocation pattern is an important plant characteristic which influences how plants respond to abiotic and biotic heterogeneity. Prior studies indicate that above-ground biomass scales nearly isometrically with respect to below-ground biomass regardless of environment or phyletic affinity. However, such rule has been mostly tested with data on trees and usually without drought stress. Given the importance of this predicted relationship, it should be evaluated for a wider range of species and environmental conditions. Variations of the above- and belowground biomass (M[A] and M[R], respectively) were determined from five sites in north-west China, which compose a natural moisture gradient (aridity index ranging from 0.95 to 1.98). Model Type II regression protocols were used to compare the numerical values of M[A] vs M[R] scaling exponents (i.e. slopes of log-log linear relationships). The resulting five scaling exponents were indistinguishable and had a similar, nearly isometric slope (i.e. M[A] [is proportional to] M[R] [is approximately equal to] 1.0). Significant variation was observed in the Y-intercepts of the five regression curves, because of the absolute differences in M[A] or M[R]. These results support prior allometric theory, which reveals an isometric relationship between above- and below-ground biomass, and may provide a suitable method to estimate the regional below-ground biomass based on the direct aboveground measurements.
Rocznik
Strony
669--675
Opis fizyczny
Bibliogr. 31 poz.,Rys., tab.,
Twórcy
autor
autor
autor
autor
autor
  • College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian Province 350007, China, wanggx@zju.edu.cn
Bibliografia
  • 1. Allen A.P., Pockman W.T., Restrepo C., Milne B.T. 2008 – Allometry, growth and population regulation of the desert shrub Larrea tridentata – Funct. Ecol. 22: 197–204.
  • 2. Bertness M.D., Callaway R.M. 1994 – Positive interaction in communities – Trends Ecol. Evol. 9: 191–193.
  • 3. Bloom A.J., Chapin F.S., Mooney. H.A. 1985 – Resource limitation in plants - an economic analogy – Annu. Rev. Ecol. Syst. 16: 363–392.
  • 4. Brown S. 2002 – Measuring carbon in forests: current status and future challenges – Environ. Pollut. 116: 363–372.
  • 5. Chen S.Q., Lu S.H., Ao Y.H., Zhang Y., Li S.S., Shang L.Y. 2007 – Characteristics of Temperature and Moisture of Jinta Oasis in Summer under Different Soil Moisture and Weather Conditions – J. Desert Res. 27: 621–626 (in Chinese with English abstract).
  • 6. Cheng D.L., Niklas K.J. 2007 – Above- and below-ground biomass relationships across 1,534 forested communities – Ann. Bot. 99: 95–102.
  • 7. Cheng D.L., Wang G.X., Chen B.M., Wei X.P. 2006 – Positive interactions: crucial organizers in a plant community – J. Integr. Plant Biol. 48: 128−136.
  • 8. Deng J.M., Wang G.X., Morris E.C., Wei X.P., Li D.X., Chen B.M., Zhao C.M., Liu J. 2006 – Plant mass-density relationship along a moisture gradient in north-west China - J. Ecol. 94: 953–958.
  • 9. Enquist B.J., Niklas K.J. 2002 – Global allocation rules for patterns of biomass partitioning across seed plants – Science, 295: 1517–1520.
  • 10. Falster D.S., Warton D.I., Wright I.J. 2003 – MATR: standardised major axis tests and routines. Version 1.0. http://www.bio.mq.edu.au/ecology/SMATR.
  • 11. Fang J.Y., Chen A.P., Peng C.H., Zhao S.Q., Ci L.J. 2001 – Changes in forest biomass carbon storage in China between 1949 and 1998 – Science, 292: 2320–2322.
  • 12. Gill R.A., Kelly R.H., Parton W.J., Day K.A., Jackson R.B., Morgan J.A., Scurlock J.M.O., Tieszen L.L. 2002 – Using simple environmental variables to estimate belowground productivity in grasslands – Glob. Ecol. Biogeogr. 11: 79–86.
  • 13. Hunt R., Lloyd P.S. 1987 – Growth and partitioning - New Phytol. 106: 235–249.
  • 14. Li B. 2000 – Ecology – Higher Education Press, Beijing, 432 pp. (in Chinese).
  • 15. McConnaughay K.D.M., Coleman J.S. 1999 – Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients - Ecology, 80: 2581–2593.
  • 16. Niklas K.J. 1992 – Plant Biomechanics – University of Chicago Press, Chicago, 395 pp.
  • 17. Niklas K.J. 2005 – Modelling below- and aboveground biomass for non- woody and woody plants – Ann. Bot. 95: 315–321.
  • 18. Niklas K.J. 2006 – A phyletic perspective on the allometry of plant biomass and functional organ-categories – New Phytol. 171: 27–40.
  • 19. Noy-Meir I. 1973 – Desert ecosystems: environment and producers – Ann. Rev. Ecol. Syst. 4: 25–49.
  • 20. Poorter H., Nagel O. 2000 – The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review – Aust. J. Plant Phys. 27: 595–607.
  • 21. Robinson D. 2004 – Scaling the depths: belowground allocation in plants, forests and biomes - Funct. Ecol. 18: 290–295.
  • 22. Scanlon T.M., Caylor K.K., Levin S.A., Rodriguez-Iturbe I. 2007 – Positive feedbacks promote power-law clustering of Kalahari vegetation – Nature, 449: 209–212.
  • 23. Schlesinger W.H., Pilmanis A.M. 1998 - Plant-soil interactions in deserts – Biogeochemistry, 42: 169–187.
  • 24. Tongway D.J., Ludwig J.A., Whitford W.G. 1989 – Mulga log mounds: fertile patches in the semi-arid woodlands of eastern Australia - Aus. J. Ecol. 14: 263–268.
  • 25. Warton D.I., Weber N.C. 2002 – Common slope tests for bivariate errors-in-variables models – Biom. J. 44: 161–174.
  • 26. Weiner J. 2004 – Allocation, plasticity and allometry in plants – Perspect. Plant Ecol. Evol. Syst. 6: 207–215.
  • 27. Whitford W.G. 2002 – Ecology of Desert Systems - Academic Press, London, 343 pp.
  • 28. White J. 1985 –The thinning rule and its application to mixture of plant populations (In: Studies in plant demographic, Ed. J. White) – New York, Academic Press, pp. 291–309.
  • 29. Yoda K., Kira T., Ogawa H., Hozumi K. 1963 – Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants XI) – J. Inst. Polytechnics, Osaka City, Univ. Series D, 14: 107–129.
  • 30. Zens M.S., Webb C.O. 2002 – Sizing up the shape of life – Science, 295: 1475–1476.
  • 31. Zhang D.Y., Jiang X.H., Zhao S.L. 1995 – An ecological analysis of growth redundancy in root systems of crops under drought conditions - Acta Botanica Boreali-Occiden Ralia Sinica, 15: 110–114 (in Chinese with English abstract).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2858-1163
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.