PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon storage of cycad and other gymnosperm ecosystems in China: implications to evolutionary trends

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cycads are an ancient lineage of plants that originated in the Permian, which are vital to the interpretation of plant ecology. The evidence in the fossil records indicates that the morphological and anatomical features of cycads are remarkably similar to the extant taxa, which has been instrumental in our understanding the connections between the early origins of seed plants and their present-day counterparts. The cycad ecosystem is an important vegetation type throughout geological time. Research on the ecological function of the cycad plays a significant role in the study of evolutionary ecology. In this study, we investigated the biomass, productivity and total carbon storage (total of vegetation, litter, and soil carbon) of cycad (Cycas panzhihuaensis L. Zhou et S.Y. Yang) ecosystems in the National C. panzhihuaensis Reserve of China (latitude 26[degrees]37', longitude 101[degrees]35', at 1635 m altitude) by applying the site-standard tree sampling harvest. Cycads are considered to be rare and endangered species, and are in the list of key protected wild plants in the world. The National C. panzhihuaensis Reserve is in Southwestern China, which area approximately 1358 ha, growing approximately 20 000 C. panzhihuaensis individuals. 20 sample plots, each 5 x 5 m were established in the spring of 2006. The mean height of cycads within the stand was 0.44 m and the mean basal diameter was 23.2 cm. The biomass and productivity data for other communities was compiled from references published over the past 20 years throughout China. The biomass and productivity of cycad ecosystems (8.102 [plus or minus] 6.880 t C ha[^-1] and 1.183 [plus or minus] 0.975 t C ha[^-1] yr[^-1], respectively) are smaller than tree fern (Alsophila spinulosa (Wall. ex Hook.) R. M. Tryon) or gymnosperm (Pinaceae, Cupressaceae or Taxodiaceae for representative) ecosystems. The community biomass of Pinaceae-, Cupressaceae- or Taxodiaceae-dominated ecosystems are 6.8, 5.4, and 5.3 times larger than the cycad ecosystem, respectively. The productivity of each is 2.3, 2.8 and 3.8 times larger than the cycad ecosystem. Cycad is an ancient dioecious plant. However, the results show that the differences between the biomass of male and female cycads, as well as the productivity, are not significant.
Rocznik
Strony
635--646
Opis fizyczny
Bibliogr. 52 poz.,Fot., tab., wykr., w
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
  • International Institute for Earth System Science, Nanjing University, Nanjing 210093 P. R. China ; International Research Center of Spatial Ecology and Ecosystem Ecology, Zhejiang Forestry University Hangzhou 311300, P. R. China, mayuandan@gmail.com
Bibliografia
  • 1. Ackerly D.D., Dudley S.A., Sultan S.E., Schmitt J., Coleman J.S., Linder C.R., Sandquist D.R., Geber M.A., Evans A.S., Dawson T.E., Lechowicz M.J. 2000 – The evolution of plant ecophysiological traits: recent advances and future directions – Bioscience, 50: 979–995.
  • 2. Ashman T.-L. 1994 – A dynamic perspective on the physiological cost of reproduction in plants – Am. Nat. 144: 300–316.
  • 3. Ataroff M., Schwarzkopf T. 1992 – Leaf production, reproductive patterns, field germination and seedling survival in Chamaedorea bartlingiana, a dioecious understory palm – Oecologia, 92: 250–256.
  • 4. Beerling D., McElwain J., Osborne C. 1998 – Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations – J. Exp. Bot. 49: 1603–1607.
  • 5. Bierzychudek P., Eckhart V. 1988 – Spatial segregation of the sexes of dioecious plants – Am. Nat. 132: 34–43.
  • 6. Brenner E.D., Stevenson D.W., Twigg R.W. 2003 – Cycads: evolutionary innovations and the role of plant-derived neurotoxins - Trends Plant Sci. 8: 446–452.
  • 7. Bullock S.H. 1992 – Effects of sex, size and substrate on growth and mortality of trees in tropical wet forest – Oecologia, 91: 52–55.
  • 8. Chaloner W.G., McElwain J. 1997 – The fossil plant record and global climatic change - Rev. Palaeobot. Palyno, 95: 73–82.
  • 9. Clark D.A., Clark D.B. 1987 – Temporal and environmental patterns of reproduction in Zamia skinneri, a tropical rain forest cycad – J. Ecol. 75: 135–149.
  • 10. Clark D.B., Clark D.A. 1988 – Leaf production and the cost of reproduction in the neotropical rain forest cycad, Zamia skinneri – J. Ecol. 76: 1153–1163.
  • 11. Clark D.B., Clark D.A., Grayum M.H. 1992 – Leaf demography of a neotropical rain forest cycad, Zamia skinneri (Zamiaceae) – Am. J. Bot. 79: 28–33.
  • 12. Dunn A.L., Barford C.C., Wofsy S.C., Goulden M.L., Daube B.C. 2007 – A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends – Global. Change. Biol. 13: 577–590.
  • 13. Eldredge N., Stanley S.M. 1984 – Living fossils - New York / Berlin: Springer Verlag, pp. 1–7.
  • 14. Feng Z.W., Wang X.K., Wu G. 1999 – Forest ecosystem’s biomass and productivity in China – Beijing, China, Science Press, 12–30 (in Chinese).
  • 15. Gangopadhyay G., Roy S.K., Ghose K., Poddar R., Bandyopadhyay T., Basu D., Mukherjee K.K. 2007 – Sex detection of Carica papaya and Cycas circinalis in preflowering stage by ISSR and RAPD – Curr. Sci. India, 92: 524–526.
  • 16. Goodale C.L., Apps M.J., Birdsey R.A., Field C.B., Heath L.S., Houghton R.A., Jenkins J.C., Kohlmaier G.H., Kurz W., Liu S., Nabuurs G.-J., Nilsson S., Shvidenko A.Z. 2002 – Forest carbon sinks in the northern hemisphere – Ecol. Appl. 12: 891–899.
  • 17. Goulden M.L., Wofsy S.C., Harden J.W., Trumbore S.E., Crill P.M., Gower S.T., Fries T., Daube B.C., Fan S.M., Sutton D.J., Bazzaz A., Munger J.W. 1998 – Sensitivity of boreal forest carbon balance to soil thaw – Science, 279: 214–217.
  • 18. Gower S.T., Krankina O., Olson R.J., Apps M., Linder S., Wang C. 2001 – Net primary production and carbon allocation patterns of boreal forest ecosystems – Ecol. Appl. 11: 1395–1411.
  • 19. Griffiths A.D., Schult H.J., Gorman J. 2005 – Wild harvest of Cycas arnhemica (Cycadaceae): impact on survival, recruitment and growth in Arnhem Land, northern Australia - Aust. J. Bot. 53: 771–779.
  • 20. Guan Z.T., Zhou L. 1996 – Cycads of China – Chengdu, China: Sichuan Publishing House of Science & Technology, pp. 128–131.
  • 21. He Y.H., Wang Q., Shi P.L. 1995 – Biological properties, trunk anatomy and growth patterns of Cycas panzhihuaensis – Acta Bot. Sin. 37: 443–451 (in Chinese with English abstract).
  • 22. Hyvonen R., Agren G.I., Linder S., Persson T., Cotrufo M.F., Ekblad A., Freeman M., Grelle A., Janssens I.A., Jarvis P.G., Kellomaki S., Lindroth A., Loustau D., Lundmark T., Norby R.J., Oren R., Pilegaard K., Ryan M.G., Sigurdsson B.D., Stromgren M., van Oijen M., Wallin G. 2007 – The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review – New Phytol. 173: 463–480.
  • 23. Imai K.K., Ohashi Y., Tsuge T., Yoshizumi T., Matsui M., Oka A., Aoyama T. 2006 – The A-type cyclin CYCA2; 3 is a key regulator of ploidy levels in Arabidopsis endoreduplication - Plant Cell, 18: 382–396.
  • 24. Jiang H. 1986 – A study on the biomass and production of Picea purpurea forest communities - Acta Phytoecol. Geobot. Sin. 10: 146–152 (in Chinese with English abstract).
  • 25. Krassilov D.A. 2003 – Terrestrial paleoecology and global change – Bulgaria, Russia: PENSOFT Publishers, pp. 285–291.
  • 26. Lindroth A., Grelle A., Moren A.-S. 1998 - Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity - Global Change Biol. 4: 443–450.
  • 27. Luo T.X. 1996 – Patterns of net primary productivity for Chinese major forest types and their mathematical models – Ph.D. thesis, Commission for integrated survey of natural resources, Chinese Academy of Sciences, Beijing, China, pp. 34–167 (in Chinese).
  • 28. Luo T.X., Li W.H., Zhu H.Z. 2002 – Estimated biomass and productivity of natural vegetation on the Tibetan plateau – Ecol. Appl. 12: 980–997.
  • 29. Ma Y.D., Jiang H., Yu S.Q., Zhou G.M., Wang B., Peng S.L., Peng C.H., Chang J., Wei X.H. 2008 – Biomass and productivity of tree fern ecosystems – J. Plant Ecol. 32: 1294–1300 (in Chinese with English abstract).
  • 30. McElwain J.C., Wagner F., Kurschner W.M., Bergen P.F.v. 1998 – Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? – Phil. Trans. Royal Society, B-Biol. Sci. 353: 83–96.
  • 31. Nicotra A.B. 1998 – Sex ratio variation and spatial distribution of Siparuna grandiflora, a tropical dioecious shrub – Oecologia, 115: 102–113.
  • 32. Niklas K.J., Marler T.E. 2008 – Sex and population differences in the allometry of an endangered cycad species, Cycas micronesica (cycadales) – Int. J. Plant Sci. 169: 659–665.
  • 33. Norstog K.J., Nicholls T.J. 1997 – The biology of the cycads – Ithaca, New York: Cornell University Press, pp. 1–5.
  • 34. Redondo-Brenes A., Montagnini F. 2006 - Growth, productivity, aboveground biomass, and carbon sequestration of pure and mixed native tree plantations in the Caribbean lowlands of Costa Rica – For. Ecol. Manag. 232: 168–178.
  • 35. Ricklefs R.E. 2001 – The economy of nature – San Francisco, California: Freeman, pp. 75–96.
  • 36. Rocheleau A.-F., Houle G. 2001 – Different cost of reproduction for the males and females of the rare dioecious shrub Corema conradii (Empetraceae) – Am. J. Bot. 88: 659–666.
  • 37. Royer D.L. 2002 – Estimating latest Cretaceous and Tertiary atmospheric CO2 concentration from stomatal indices – Ph.D. thesis, Yale University, New Haven, CT, pp. 33–39.
  • 38. Royer D.L., Hickey L.J., Wing S.L. 2003 – Ecological conservatism in the “living fossil” Ginkgo – Paleobiology, 29: 84–104.
  • 39. Schneider D., Wink M., Sporer F., Lounibos P. 2002 – Cycads: their evolution, toxins, herbivores and insect pollinators – Naturwissenschaften, 89: 281–294.
  • 40. Seymour R.S., Terry I., Roemer R.B. 2004 - Respiration and thermogenesis by cones of the Australian cycad Macrozamia machinii – Funct. Ecol. 18: 925–930.
  • 41. Terr y L.I., Walter G.H., Donaldson J.S., Snow E., Forster P.I., Machin P.J. 2005 - Pollination of Australian Macrozamia cycads (Zamiaceae): Effectiveness and behavior of specialist vectors in a dependent mutualism - Am. J. Bot. 92: 931–940.
  • 42. Terry I., Walter G.H., Moore C., Roemer R., Hull C. 2007 – Odor-mediated push-pull pollination in cycads – Science, 318: 70–70.
  • 43. Terry I., Forster P.I., Moore C.J., Roemer R.B., Machin P.J. 2008 – Demographics, pollination syndrome and conservation status of Macrozamia platyrhachis (Zamiaceae), a geographically restricted Queensland cycad – Aust. J. Bot. 56: 321–332.
  • 44. Thomas B.A., Spicer R.A. 1987 – The evolution and palaeobiology of land plants – London, UK: Croom Helm, pp. 15–32.
  • 45. Uri V., Lõhmus K., Ostonen I., Tullus H., Lastik R., Vildo M. 2007 – Biomass production, foliar and root characteristics and nutrient accumulation in young silver birch (Betula pendula Roth.) stand growing on abandoned agricultural land – Eur. J. For. Res. 126: 495–506.
  • 46. Wang Q. 2001 – Distinguishing of Cycas panzhihuaensis age – Abstract collection-Proceedings of the Third National Conference on Cycad. Botanical Society of China, Nanning, China (in Chinese).
  • 47. Wei L.J. 2005 – Studies on anatomy structure characteristics of some cycads and adaptation of them and environment – Guangxi University, Nanning, China, pp. 1–2 (in Chinese).
  • 48. Wei L.J., Lv P., Su W.P., Yu B.C., Ye Q.T. 2006 – Protection status and perspective of cycas in China – Tropical Agricul. Sci. Technol. 1: 24–26 (in Chinese with English abstract).
  • 49. Weiblen G.D. 2000 – Phylogenetic relationships of functionally dioecious Ficus (Moraceae) based on ribosomal DNA sequences and morphology – Am. J. Bot. 87: 1342–1357.
  • 50. Whittaker R.H., Marks P.L. 1975 – Methods of assessing terrestrial productivity (In: Primary productivity of the biosphere, Eds: H. Lieth, R.H. Whittaker) – Springer- Verlag, New York, New York, pp. 55–118.
  • 51. Willis K.J., McElwain J.C. 2002 – The evolution of plants – New York: Oxford Universty Press, pp. 130–139.
  • 52. Yoshida K. 2002 – Long survival of “living fossils” with low taxonomic diversities in an evolving food web – Paleobiology, 28: 464–473
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2858-1117
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.