PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of evalutionary approach to thermodynamical optimization of gas turbine airfoil cooling configuration

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cooling of the hot gas path components plays a key role in modern gas turbines. It allows, due to efficiency reasons, to operate the machines with temperature exceeding components. melting point. The cooling system however brings about some disadvantages as well. If so, we need to enforce the positive effects of cooling and diminish the drawbacks, which influence the reliability of components and the whole machine. To solve such a task we have to perform an optimization which makes it possible to reach the desired goal. The task is approached in the 3D configuration. The search process is performed by means of the evolutionary approach with floating-point representation of design variables. Each cooling structure candidate is evaluated on the basis of thermo-mechanical FEM computations done with Ansys via automatically generated script file. These computations are parallelized. The results are compared with the reference case which is the C3X airfoil and they show a potential stored in the cooling system. Appropriate passage distribution makes it possible to improve the operation condition for highly loaded components. Application of evolutionary approach, although most suitable for such problems, is time consuming, so more advanced approach (Conjugate Heat Transfer) requires huge computational power. The analysis is based on original procedure which involves optimization of size and location of internal cooling passages of cylindrical shape within the airfoil. All the channels can freely move within the airfoil cross section and also their number can change. Such a procedure is original.
Rocznik
Strony
3--20
Opis fizyczny
Bibliogr. 17 poz.,Fot., rys., tab., wz.,
Twórcy
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, ul. Konarskiego 18, 44-100 Gliwice, Poland, grzegorz.nowak@polsl.pl
Bibliografia
  • 1. BUCCHIERI G., GALBIATI M., COUTANDIN D., ZECCHI S.: Optimisation techniques applied to the design of gas turbine blades cooling systems. Proc. of ASME Turbo Expo, Barcelona, 8-11 May 2006, paper GT2006-90771.
  • 2. DENNIS B., EGOROV I., DULIKRAVICH G., YOSHIMURA S.: Optimization of a large number coolant passages located close to the surface of a turbine blade. Proc. of ASME Turbo Expo, Atlanta, 16-19 June 2003, paper GT2003-38051.
  • 3. DENNIS B., EGOROV I., SOBIECZKY H., DULIKRAVICH G., YOSHIMURA S.: Parallel thermoelasticity optimization of 3-D serpentine cooling passages in turbine blades. Proc. of ASME Turbo Expo, Atlanta, 16-19 June 2003, paper GT2003-38180.
  • 4. DULIKRAVICH G., MARTIN T., DENNIS B., FOSTER N.: Multidisciplinary Hybrid Constrained GA Optimization. In.: Evolutionary Algorithms in Engineering and Computer Science: Recent Advances and Industrial Applications, K. Miettinen, M.M. Makela, P. Neittaanmaki, J. Periaux (eds.), Wiley & Sons, 1999.
  • 5. FAVORETTO C., FUNAZAKI K.: Application of genetic algorithms to design of an internal turbine cooling system. Proc. of ASME Turbo Expo, Atlanta, 16-19 June 2003, paper GT2003-38408.
  • 6. GOLDBERG D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading 1989.
  • 7. GONZALEZ M., JELISAVCIC N., MORAL R., SAHOO D., DULIKRAVICH G., MARTIN T.: Multi-objective design optimization of topology and performance of branching networks of cooling passages. Int. J. Therm. Sci. 46(2007) 11, 11-91-1202.
  • 8. HAASENRITTER A., WEIGAND B.: Optimization of the rib structure inside a 2D cooling channel. Proc. of ASME Turbo Expo, Vienna, 14-17 June 2004, paper GT2004-53187.
  • 9. HYLTON L., MIHELC M., TURNER E., NEALY D., YORK R.: Analytical and Experimental Evaluation of the Heat Transfer Distribution over the Surface of Turbine Vanes. NASA Lewis Research Centre, 1983.
  • 10. MARTIN T.J., DULIKRAVICH G.: Aero-thermo-elastic concurrent optimization of internally cooled turbine blades. In: Advances in Boundary Elements: Coupled Field Problems, A.J. Kassab, M.H. Aliabadi (eds.), WIT Press, Southampton - Boston 2001, 137-184.
  • 11. MICHALEWICZ Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag, New York 1996.
  • 12. MUELLER S.: Bio-Inspired Optimization Algorithms for Engineering Application PhD thesis, Swiss Federal Institute of Technology, Zurich 2002.
  • 13. NOWAK G., WRÓBLEWSKI W.: Cooling System Optimization of Turbine Guide Vane. Apple. Therm. Eng 19(2009), 567-572.
  • 14. SHOKO I., SAEKI H., INOMATA A., OOTOMO F., YAMASHITA K., FUKUYAMA Y., KODA E., TAKEHASHI T., SATO M., KOYAMA M., NINOMIYA T.: Conceptual design and cooling blade development of 1700 degrees C class high-temperature gas turbine. Trans. ASME Journal Engineering for Gas Turbines and Power 127(2005) 2, 358-68.
  • 15. TALYA S., CHATTOPADHYAY A., RAJADAS J.: Multidisciplinary design optimization procedure for improved design of a cooled gas turbine blade. Engineering Optimization 34(2008) 2, 175-194.
  • 16. VERSTRAETE T., AMARAL S., VAN DEN BRAEMBUSSCHE R., ARTS T.: Design and optimization of the internal cooling channels of a hp turbine blade - Part II, Optimization. Proc. of ASME Turbo Expo, Berlin, 9-13 June 2008, paper Gt2008-51080.
  • 17. ZECCHI S., ARCANGELI L., FACCHINI B., COUTANDIN D.: Features of cooling systems simulation tool used in industrial preliminary design stage. Proc. of ASME Turbo Expo, Vienna, 14-17 June 2004, paper GT 2004-53547.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2858-1102
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.