Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
There are many mathematical models of the singular solid oxide fuel cell (SOFC). SOFC performance modelling is related to the multiphysic processes taking places on the fuel cell surfaces. Heat transfer together with electrochemical reactions, mass and charge transport are conducted inside the cell. There are many parameters which impact the cell working conditions, e.g. electrolyte material, electrolyte thickness, cell temperature, inlet and outlet gas compositions at anode and cathode, anode and cathode porosities ect. The Artificial neural Network (ANN) can be applied to stimulate an object.s behaviour without an algorithmic solution merely by utilizing available experimental data. The ANN is used for modelling singular cell behaviour. The optimal network architecture is shown and commented. The error back-propagation algorithm was used for an ANN training procedure.
Czasopismo
Rocznik
Tom
Strony
13--24
Opis fizyczny
Biblior. 11 poz.,Rys., tab., wykr., wz.,
Twórcy
autor
autor
autor
autor
- Institute if Heat Engineering, Warsaw University if Technology, ul. Nowowiejska 21/25, 00-665 Warsaw, Poland, milewski@itc.pw.edu.pl
Bibliografia
- [1] ARRIAGADA J., OLAUSSON P., SELIMOVIC A.: Artificial neural network simulator for SOFC performance prediction, J. of Power Sources, 112(2002).
- [2] JURADO F.: Power supply quality improvement with a SOFC plant by neural-network-based control, J. of Power Sources, 117(2003).
- [3] HUO H-B., ZHU X-J., CAO G-Y.: Nonlinear modeling of a SOFC stack based on a least squares support vector machine, Journal of Power Sources, 162(2006).
- [4] WU X-J., ZHU X-J., CAO G-Y., TU H-Y.: Nonlinear modelling of a SOFC stack by improved neural networks identification, Zhejiang University Press, 8(2007).
- [5] WU X-J., ZHU X-J., CAO G-Y., TU H-Y.: Modeling a SOFC stack based on GA-RBF neural network identification, J. of Power Sources, 167(2007).
- [6] ENTCHEV E., YANG L.: Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation, J. of Power Sources, 170(2007).
- [7] DERMUTH H., Beale M., Hagan M.: Natural Network ToolbocTM, 6 User’s Guide Matlab®
- [8] FORESEE F.D., HAGAN M.T.: Gauss-Newton approximation to Bayesian regularization, Proc. of the Int. Joint Conf. on Neural Networks, 1997.
- [9] SRDIC V.V, OMORJAN R.P., SEIDEL J.: Electrochemical performances of (La,Sr)CoO3 cathode for zirconia-based solid oxide fuel cells, Materials Science and Engng B, 116(2005).
- [10] DUSASTRE V., KILNER J.A.: Optimisation of composite cathodes for intermediate temperature SOFC applications, Solid State Ionics, 126(1999).
- [11] MAI A., HAANAPPEL V.A.C., UHLENBRUCK S., TIETZ F., STOVER D.: Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells. Part I. Variation of composition, Solid State Ionics, 176(2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2716-0398
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.