PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Earthworms (Lumbricidae) as bioindicators : the relationship between in-soil and in-tissue heavy metal content

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The heavy metal (Cd, Zn, Cu, Pb, Ni, Cr) accumulation in earthworms was measured and evaluated on 84 differently managed and polluted sites (field, grassland, deciduous forest, coniferous forest, alluvial sites, mine spoil) together with selected soil properties, like pH and C[org]-contents. The uptake of heavy metals by the earthworms was correlated with in-soil metal amounts and it showed a considerable variation between land use types and the individual lumbricid species. An important positive correlation was determined between in-tissue contents of earthworms and in-soil contents for all studied heavy metals: Cd (R[^2] = 0.72), Cu (R[^2] = 0.65), Cr (R[^2] = 0.54), Pb (R[^2] = 0.51), Zn (R[^2] = 0.47), Ni (R[^2] = 0.45). Mostly Cd and Zn are accumulated by earthworms. The uptake of Cd and Zn by epigeic earthworms is stronger than by other endogeic and anecic species. The highest metal amounts of Cd were accumulated in the following species: Aporrectodea caliginosa (Savigny) (18 mg kg[^-1] dw) Lumbricus castaneus (Savigny) (17 mg kg[^-1] dw), Octolasion cyaneum (Savigny) (17 mg kg[^-1] dw), Lumbricus rubellus (Hoffmeister) (14 mg kg[^1] dw). The highest uptake of Zn was found for the species: L. castaneus (623 mg kg[^-1] dw), Lumbricus terrestris (Linnaeus) (433 mg kg[^-1] dw), A. caliginosa (416 mg kg[^-1] dw), and L. rubellus (339 mg kg[^-1] dw). The lowest contents of Cd (3 mg kg[^-1]dw) were calculated for Aporrectodea longa (Ude) and for Zn - Allolobophora chlorotica (Savigny) (168 mg kg[^1-] dw). Transfer ratios (TR) (ratio of in-soil heavy metal content to the in-tissue metal content in earthworms) ranged for Cd - from 6 in alluvial forest sites to 64 in coniferous forest sites and for Zn - from 2 in alluvial grassland to 12 in coniferous forest. Cd and Zn are more strongly taken up by the epigeic species like Dendrobaena octaedra (Savigny) (TR: Cd = 47, Zn = 8), L. rubellus (TR: Cd = 21, Zn = 5), and L. castaneus (TR: Cd = 12, Zn = 5) than by the other endogeic and anecic species, with TR values accounted from 9 to 21 for Cd and 2 to 5 for Zn, respectively. For risk assessment of habitats cadmium is the more important heavy metal due to its high transfer rates into the tissues of earthworms.
Rocznik
Strony
513--523
Opis fizyczny
Bibliogr. 36 poz.,Tab., wykr.,
Twórcy
autor
  • Soil Biology and Ecology, Institute for Agricultural and Nutritional Sciences, Martin Luther University, Halle Wittenberg, Weidenplan 14, 06108 Halle/Saale, Germany, sabine.tischer@landw.uni-halle.de
Bibliografia
  • 1. Alberti G., Hauk B., Köhler H.-R., Storch V. 1996 – Dekomposition – Ecomed–Verlag, Landsberg, 490 pp.
  • 2. Arndt U., Nobel W., Schweizer B. 1987 – Bioindikatoren. Möglichkeiten, Grenzen und neue Erkenntnisse – Eugen Ulmer Verlag, Stuttgart.
  • 3. BundesBodenschutzgesetz 1998 – Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten – BGBL I Nr.16, vom 24. März 1998. pp. 502–510.
  • 4. Dunger W., Fiedler H.J. 1997 – Methoden der Bodenbiologie – Gustav Fischer Verlag, Jena, 539 pp.
  • 5. Emmerling C., Krause K., Schrader D. 1997 – The use of earthworms monitoring soil pollution by heavy metals – Z. Pflanzenern. Bodenkunde, 160: 33–39.
  • 6. Graff O. 1953 – Die Regenwürmer Deutschlands –Verlag Schaper, Hannover, pp. 31–81.
  • 7. Greig-Smith P.W., Becker H., Edwards P.J., Heimbach R. 1992 – Ecotoxicology of earthworms – Intercept Ltd., Andover.
  • 8. Gutteck U. 1997 – Bodenbeobachtung im Land Sachsen-Anhalt – Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt, 23: 6–35.
  • 9. Heikens A., Peijnenburg W.J.G.M., Hendriks A.J. 2001 – Bioaccumulation of heavy metals in terrestrial invertebrates – Environ. Poll. 113: 385–393.
  • 10. Hobbelen P.H.F., van den Brink P.J., Hobbelen J.E., van Gestel C.A.M. 2006 – Effects of heavy metals on the structure and functioning of detrivore communities in a contaminated floodplain area – Soil Biol. Biochem. 38: 1596–1607.
  • 11. Hopkin S.P. 1989 – Ecophysiology of metals in terrestrial invertebrates – Elsevier Applied Science, London.
  • 12. Ireland M.P. 1983 – Heavy metal uptake and tissue distribution in earthworms (In: Earthworm Ecology, Ed. J.E. Satchell) – Chapman and Hall, London, pp. 247–265.
  • 13. Koch M., Gullich P., Hanussek-Biermann M. 2006 – Fachstandpunkte der Thüringer Landesanstalt für Umwelt und Geologie 10/2006, Arbeitsgemeinschaft Bodendauerbeobachtung Thüringen (AG BD Thüringen).
  • 14. Kratz W. 1994 – Ökotoxikologische Bioindikation: Schwermetallkonzentrationen (Pb, Cd, Cu, Zn) in Lumbriciden aus dem Monitoringprogramm Naturhaushalt Berlin und Umland – Zeitschr. Angewandte Zoologie, 80: 391–413.
  • 15. Lee K.E. 1985 – Earthworms: Their ecology and relationships with soils and land use – Acad. Press, Sydney, 411 pp.
  • 16. Ma W.C. 1982 – The influence of soil properties and worm-related factors on the concentration of heavy metals in earthworms – Pedobiologia, 24: 109–119.
  • 17. Ma W.C. 1988 – Toxicity of copper to lumbricid earthworms in sandy agricultural soils amended with Cu-enriched organic waste materials - Ecol. Bull. 39: 53–56.
  • 18. Merian E. 1991 – Metals and the compounds in the environment – VCH Verlagsgesellschaft, Weinheim.
  • 19. Nahmani J., Lavelle P., Lapied E., van Oort F. 2003 – Effects of heavy metal pollution on earthworm communities in the north of France – Pedobiologia, 47: 663–669.
  • 20. Paoletti M.G. 2001 – Invertebrate biodiversity as bioindicators of sustainable landscape – Elsevier, Amsterdam, pp. 137–155.
  • 21. Pižl V., Josens G. 1995 – The influence of traffic pollution on earthworms and their heavy metal contents in an urban ecosystem – Pedobiologia, 39: 442–453.
  • 22. Rahtkens K., von der Trenck T. 2006 – Schwermetalle in Regenwürmern Baden-Württembergs. Teil I: Metallgehalte in Regenwürmern von Wald- Dauerbeobachtungsflächen – UWSFZ. Umweltchem. Ökotox. 18: 164–174.
  • 23. Rahtkens K., von der Trenck T. 2007a - Schwermetalle in Regenwürmern Baden-Württembergs. Teil II: Ökotoxikologische Bewertung des Bodens – UWSF-Z. Umweltchem. Ökotox. 19: 27–36
  • 24. Rahtkens K., von der Trenck T. 2007b - Schwermetalle in Regenwürmern Baden-Württembergs, Ergebnisse aus einer Langzeituntersuchung mit ökotoxikologischer Bewertung - UBA-Texte 34/07: 121–141.
  • 25. Römbke J. 1997 – Boden als Lebensraum für die Bodenorganismen. Literaturstudie – Handbuch Boden-Texte und Berichte zum Bodenschutz: 4/97
  • 26. Roth-Holzapfel M. 1990 – Multi-element analysis of invertebrate animals in a forest ecosystem (Picea abies. L.) (In: Element concentration cadasters in ecosystems: methods and assessment and evaluation, Eds. H. Lieth, B. Markert) – VCH Verlagsgesellschaft, Weinheim, pp. 281–295.
  • 27. Sims R.W., Gerard B.M. 1985 – Earthworms: Keys and notes for the identification and study of species. London: The Linnean Society of London and the Estuarine and Brackish – Water Sciences Association, pp. 47–121.
  • 28. Spurgeon D.J., Weeks J.M. 1997 – Evaluation of factors influencing results from laboratory tests with earthworms. (In: Advances in earthworm ecotoxicology, Eds. S. Sheppard, J. Bembridge, M. Holmstrup, L. Postuma) – Technical Publication SETAC, pp. 15–25.
  • 29. Strojan C.L. 1978 – The impact of zinc smelter emissions on forest litter arthropods – Oikos, 31: 41–46.
  • 30. Tischer S. 2008 – Lumbricidae communities in soil monitoring sites differently managed and polluted with heavy metals – Pol. J. Ecol. 56: 635– 646.
  • 31. Tischer S., Lampe S., Tanneberg H. 2002 – Bodenbiologische Untersuchungen an anthropogenen Standorten im Nationalpark Hochharz - Berichte Landesamt Umweltschutz
  • 32. Sachsen-Anhalt, Sonderheft, pp. 172–175. Tischer S., Tanneberg H. 2003 – Artendiversität und Schwermetallgehalte von Lumbriciden auf Bodendauerbeobachtungsflächen unterschiedlicher Nutzung in Sachsen-Anhalt - Mitteilungen Deutsche Bodenkundliche Gesellschaft, 102: 327–328.
  • 33. Vandecasteele B., Samyn J., Quataert P., Muys B., Tack F. M.G. 2004 – Earthworm biomass as additional information for risk assessment of heavy metal biomagnification: a case study for dredged sediment-derived soils and polluted floodplain soils – Environ. Poll. 129: 363–375.
  • 34. van Straalen N.M., Butovsky R.O., Pokarzhevskii A.D., Zaitzev A.S. Verhoef S.C. 2001 – Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia) – Pedobiologia, 45: 451–466.
  • 35. Wallwork J.A. 1983 – Earthworms biology – Studies in biology No. 161. Camelot Press, Southhampton.
  • 36. Wilke B.M., Hund-Rinke K., Pieper S., Römbke J., Marschner A. 2004 – Entwicklung von Prüfwertempfehlungen für ausgewählte Schadstoffe zum Schutz des Bodens als Lebensraum für Bodenorganismen – UWSF Z. Umweltchem. Ökotox. 16: 155–160.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2715-0297
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.