PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Deep-sea ichnology : observations in modern sediments to interpret fossil counterparts

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Extensive areas of the abyss represent a dynamic environment experiencing seasonally strongly fluctuating organic-matter deposition that in turn affects the oxygen content of the pore water. At high organic-matter deposition, oxygenation of the pore water decreases and forces organisms respiring this water to move upward. Thus, times of benthic food richness on the seafloor affect the behaviour of endobenthic organisms; aside from deep-deposit feeding, temporary surface feeding (including unselective bulldozing) represents an additional nutritional strategy. This has been shown for the producers of Nereites and Scolicia as well as Thalassinoides and Zoophycos, the latter two have an open tube. Each of these activities leads to intense sediment mixing and prevents or disturbs the formation of near-surface burrows including graphoglyptids. The distribution of organic matter in the sediments is reflected by the orientation and geometry of Phycosiphon. Quantity and quality of food appear to be related to abundance and size of Scolicia. Food selectivity, the ability of selective feeding and organism mobility all appear to be important factors in benthic ecology, however, they are as yet little known. To use the full potential of uniformitarian studies relying on cores taken in soft sediments, they should be based on X-ray radiographs, contain information about the timing of burrow production and focus on ichnotaxonomically determinable burrows.
Rocznik
Strony
125--138
Opis fizyczny
Bibliogr. 88 poz.,Fot., rys., tabl.,
Twórcy
autor
  • Geologisch-Palaontologisches Institut der Universitat Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland, Andreas.Wetzel@unibas.ch
Bibliografia
  • Abel, O. 1935. Vorzeitliche Lebensspuren, 644 pp. Fischer; Jena.
  • Antoine, D., André, J.-M. and Morel, A. 1996. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochemical Cycles, 10, 57–69.
  • Ausich, W.I. and Bottjer, D.J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216, 173–174.
  • Berger, W.H. and Heath, G.R. 1968. Vertical mixing in pelagic sediments. Journal of Marine Science, 26, 134–147.
  • Betts, J.N. and Holland, H.D. 1991. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Palaeogeography, Palaeoclimatology, Palaeoecology, 97, 5–18.
  • Boudreau, B.P. 1986. Mathematics of tracer mixing in sediments. I. Spacially dependent diffusive mixing. American Journal of Science, 286, 161–198.
  • Bromley, R.G. and Ekdale, A.A. 1986. Composite ichnofabrics and tiering of burrows. Geological Magazine, 123, 59–65.
  • Bromley, R.G., Jensen, M. and Asgaard, U. 1995. Spatangoid echinoids: deep-tier trace fossils and chemosymbiosis. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 195, 25–35.
  • Carney, R.S. 1989. Examining relationships between organic carbon flux and deep-sea deposit feeding. In: Lopez, G., Taghon, G. and Levinton, J. (Eds), Ecology of Marine Deposit Feeders. Lecture Notes on Coastal and Estuarine Studies, 31, pp. 24–58. Springer; Berlin, Heidelberg, New York.
  • Crimes, T.P. and Harper, J.C. (Eds) 1970. Trace Fossils. Geological Journal Special Issue, 3, 547 pp. Seel House Press; Liverpool.
  • Crimes, T.P. and Harper, J.C. (Eds) 1977. Trace Fossils 2.Geological Journal Special Issue, 9, 351 pp. Seel House Press; Liverpool.
  • Crimes, T.P. 1992. Changes in the trace fossil biota across the Proterozoic-Phanerozoic boundary. Journal of the Geological Society of London, 149, 637–646.
  • Curran, H.A. (Ed.) 1985. Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists, Special Publication, 35, 347pp. Society of Economic Paleontologists and Mineralogists; Tulsa.
  • Dando, P.R., Southward, A.J., Southward, E.C., Lamont, P. and Harvey, R. 2008. Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic. Deep-Sea Research I, 55, 966–996.
  • Deuser, W.G., Brewer, P.G., Jickells, T.D. and Commeau, R.F. 1983. Biological control of the removal of abiogenic particles from the surface ocean. Science, 219, 388–391.
  • Ekdale, A. and Berger, W.H. 1978. Deep-sea ichnofacies: modern organism traces on and in pelagic carbonates of the western equatorial Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 23, 263–278.
  • Ekdale, A.A. 1980. Graphoglyptid burrows in modern deepsea sediments. Science, 207, 304–306.
  • Ekdale, A.A., Bromley, R.G. and Pemberton, S.G. 1984. Ichnology. Society of Economic Paleontologists and Mineralogists Short Course Notes, 15, 317 pp. Society of Economic Paleontologists and Mineralogists; Tulsa.
  • Ekdale, A., Muller, L.N. and Novak, M.T. 1984. Quantitative ichnology of modern pelagic deposits in the abyssal Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 45, 189–223.
  • Forster, S. 1996. Spatial and temporal distribution of oxidation events occurring below the sediment-water interface. Marine Ecology, 17, 309–319.
  • Froelich, P.N., Klinkhammer, G.P., Luedtke, N., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B. and Maynard, V. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43, 1075–1090.
  • Gage, J.D. and Tyler, P.A. 1991. Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor, 504 pp. Cambridge University Press; Cambridge.
  • Gaillard, C. 1991. Recent organismtraces and ichnofacies on the deep-sea floor off New Caledonia, southwestern Pacific. Palaios, 6, 302–315.
  • Gehlen, M., Rabouville, C., Ezat, U. and Guidi-Guilvard, L.D. 1997. Drastic changes in deep-sea sediment porewater composition induced by episodic input of organic matter. Limnology and Oceanography, 42, 980–986.
  • Glover, A.G., Smith, C.R., Mincks, S.L., Sumida, P.Y.G. and Thurber, A.R. 2008. Macrofaunal abundance and composition on the West Antarctic Peninsula continental shelf: Evidence for a sediment “food bank” and similarities to deep-sea habitats. Deep-Sea Research II, 55, 2491–2501.
  • Gooday, A.J. and Turley, C.M. 1990. Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Philosophical Transactions of the Royal Society London, A331, 119–138.
  • Haeckel, M., Beusekom, J.V., Wiesner, M.G. and König, I. 2001. The impact of the 1991Mount Pinatubo tephra fallout on the geochemical environment of the deep-sea sedments in the South China Sea. Earth and Planetary Science Letters, 193, 151–166.
  • Hartnett, H.E., Keil, R.G., Hedges, J.I. and Devol, A.H. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature, 391, 572–574.
  • Hedges, J.I. and Keil, R.G. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49, 81–115.
  • Jumars, P. and Ekman, J.E. 1983. Spatial structure within deep-sea benthic communities In: Rowe, G.T (Ed.), Deep-Sea Biology, The Sea, 8, pp. 399–451.Wiley; New York.
  • Kaminski, M.A. and Wetzel, A. 2004. A tubular protozoan predator: A burrow selectively filled with tubular agglutinated protozoans (Xenophyophorea, Foraminifera) in the abyssal South China Sea. In: Bubik, M. and Kaminski, M.A. (Eds), Proceedings of the Sixth International Workshop on Agglutinated Foraminifera, Grzybowski Foundation Special Publication, 8, pp. 277–283. London.
  • Kitchell, J., Kitchell, J.F., Johnson, G.L. and Hunkins, K.L. 1978.Abyssal traces and megafauna: comparison of productivity, diversity and density in the Artic and Antartic. Paleobiology, 4, 171–180.
  • Konhauser, K. 2007. Introduction to Geomicrobiology, 425 pp. Blackwell; Oxford.
  • Kotake, N. 1989. Palecology of the Zoophycos producers. Lethaia, 22, 327–341.
  • Kotake, N. 1991. Non-selective surface deposit feeding by the Zoophycos producers. Lethaia, 24, 379–385.
  • Kröncke, I. 2006. Structure and function of macrofaunal communities influenced by hydrodynamically controlled food availability in the Wadden Sea, the open North Sea, and the deep-sea. Asynopsis. Senckenbergiana Maritima, 36, 123–164.
  • Kuehl, S., Fuglseth, T.J. and Thunell, R.C. 1993. Sediment mixing and accumulation rates in the Sulu Sea and South China Seas: Implications for organic carbon preservation in deep-sea environments. Marine Geology, 111, 15–35.
  • Lampitt, R.S. and Antia, A.N. 1997. Particle flux in deep seas: regional characteristics and temporal variability. Deep-Sea Research I, 44, 1377–1403.
  • Legeleux, F., Reyss, J.-L. and Schmidt, S. 1994. Particlemixing rates in sediments of the northeast tropical Atlantic from 210Pbxs, 137Cs, 238Thxs and 234Thxs downcore distribution. Earth and Planetary Science Letters, 128, 545–562.
  • Leszczyński, S. 1991. Oxygen-related controls on predepositional ichnofacies in turbidites, Guipúzcoan Flysch (Albian-lower Eocene), northern Spain. Palaios, 6, 271–280.
  • Leuschner, D.C., Sirocko, F., Grootes, P.M. and Erlenkeuser, H. 2002. Possible influence of Zoophycos bioturbation on radiocarbon dating and environmental interpretation. Marine Micropalaeontology, 46, 111–126.
  • Liu, K., -K., Chao, S.-Y., Shaw, P.-T., Gong, G.-C., Chen, C.-C. and Tang, T.Y. 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Research I, 49, 1387–1412.
  • Löwemark, L. 2007. Importance and usefulness of trace fossils and bioturbation in paleoceanography. In: W. Miller, III. (Ed.), Trace Fossils – Concepts, Problems, Prospects, pp. 413–427. Elsevier; Amsterdam.
  • Löwemark, L. and Grootes, P.M. 2004. Large age differences between planktic foraminifers caused by abundance variations and Zoophycos bioturbation. Paleoceanography, 19, PA2001 1–9.
  • Löwemark, L. and Werner, F. 2001. Dating errors in high-resolution stratigraphy: a detailed X-ray radiograph and AMS-14C study of Zoophycos burrows. Marine Geology, 177, 191–198.
  • Lutz, M., Dunbar, R. and Caldeira, K. 2002. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Global Biogeochemical Cycles, 16, 1037–1055.
  • Lutz, M.J., Caldeira, K., Dunbar, R.B. and Behrenfeld, M.J. 2007. Seasonal rhythms of net primary production and particulate organic carbon flux describe biological pump efficiency in the global ocean. Journal of Geophysical Research, 112, C 10011, 1–26.
  • Miller, W., III. (Ed.) 2007. Trace Fossils – Concepts, Problems, Prospects, 611 pp. Elsevier; Amsterdam.
  • Mincks, S., Smith, C.R. and Demaster, D.J. 2005. Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment ‘food bank’. Marine Ecology Progress Series, 300, 3–19.
  • Morse, J.W. and Beazley, M.J. 2008. Organic matter in deepwater sediments of the northern Gulf of Mexico and its relationship to the distribution of benthic organisms. Deep-Sea Research II, 55, 2563–2571.
  • Müller, P.J. and Suess, E. 1979. Productivity, sedimentation rate and sedimentary organic matter in the oceans. I. Organic carbon preservation. Deep-Sea Research, 26, 1347–1362.
  • Oliveira, A., Santos, A.I., Rodrigues, A. and Vitorino, J. 2007. Sedimentary particle distribution and dynamics on the Nazaré canyon system and adjacent shelf (Portugal). Marine Geology, 246, 105–122.
  • Pemberton, S.G., Spila, M., Pulham, A.J., Saunders, T., Maceachern, J.A., Robbins, D. and Sinclair, I.K. 2001. Ichnology and Sedimentology of Shallow to Marginal Marine Systems. Geological Association of Canada Short Course Notes, 15, 343 pp. Geological Association of Canada, Department of Earth Sciences, Memorial University of Newfoundland; St. John’s, Newfoundland.
  • Reimers, C.E., Fischer, K.M., Merewether, R., Smith, K.L., Jr. and Jahnke, R.A. 1986. Oxygen microprofiles measured in situ in deep ocean sediments. Nature, 320, 741–744.
  • Rona, P. and Merrill, G.F. 1978. A benthic invertebrate from the Mid-Atlantic Ridge. Bulletin of Marine Science, 28, 371–375.
  • Rowe, G.T. 1983. Biomass and production of the deep-sea macrobenthos. In: G.T. Rowe (Ed.), The Sea, 8, pp. 97–121.Wiley and Sons; New York.
  • Sanders, H.L. 1968. Marine benthic diversity: a comparative study. American Naturalist, 102, 243–282.
  • Schäfer, W. 1962. Aktuo-Paläontologie, 666 pp. Kramer; Frankfurt.
  • Seilacher, A. 1977. Evolution of trace fossil communities In: Hallam, A. (Ed.), Patterns of Evolution as Illustrated by the Fossil Record. Developments in Paleontology and Stratigraphy, 5, pp. 359–376. Elsevier; Amsterdam.
  • Smith, C.R., Hoover, D.J., Doan, S.E., Pope, R.H., Demaster, D.J., Dobbs, F.C. and Altabet, M.A. 1996. Phytodetritus at the abyssal seafloor across 10° of latitude in the central equatorial Pacific. Deep-Sea Research II, 43, 1309–1338.
  • Smith, K.L., Jr., Baldwin, R.J., Karl, D.M. and Boetius, A. 2002. Benthic community responses to pulses in pelagic food supply: North Pacific Subtropical Gyre. Deep-Sea Research I, 49, 971–990.
  • Soetaert, K., Herman, P.M.J. and Middelburg, J.J. 1996. Dynamic response of deep-sea sediments to seasonal variations: a model. Limnology and Oceanography, 41, 1651–1668.
  • Stow, D.A.V. and Wetzel, A. 1990. Hemiturbidite: a new type of deep-water sediment In: Cochran, J.R., Stow, D.A.V. et al. (Eds), Scientific Results. Proceedings of the Ocean Drilling Project, 116, 25–34. Ocean Drilling Program, College Station, TX.
  • Suess, E. 1980. Particulate organic carbon flux in the oceans – surface productivity and oxygen utilization. Nature, 288, 260–263.
  • Thomson, J., Brown, L., Nixona, S., Cook, G.T. and Mackenzie, A.B. 2000. Bioturbation and Holocene sediment accumulation fluxes in the north-east Atlantic Ocean (Benthic Boundary Layer experiment sites).Marine Geology, 169, 21–39.
  • Thurston, M.H., Bett, B.J., Rice, A.L. and Jackson, P.A.B. 1994.Variations in the invertebrate abyssal megafauna in the North Atlantic Ocean. Deep-Sea Research I, 41, 1321–1348.
  • Trauth, M., Sarnthein, M. and Arnold, M. 1997. Bioturbational mixing depth and carbon flux at the seafloor. Paleoceanography, 12, 517–526.
  • Tyler, P.A. 1988. Seasonality in the deep sea. Oceanography and Marine Biology – An Annual Review, 26, 227–258.
  • Tyson, R.V. 2001. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry, 32, 333–339.
  • Uchman, A. 1995. Taxonomy and palaeoecology of flysch trace fossils: The Marnoso-arenacea Formation and associated facies (Miocene, Northern Appenines, Italy). Beringeria, 15, 1–114.
  • Uchman, A. 1998. Taxonomy and ethology of flysch trace fossils: revision of the Marian Książkiewicz collection and studies of complementary material. Annales Societatis Geologorum Poloniae, 68, 105–208.
  • Uthicke, S. and Karez, R. 1999. Sediment patch selectivity in tropical sea cucumbers (Holothurioidea: Aspidochirotida) analysed with multiple device choice experiments. Journal of Experimental Marine Biology and Ecology, 236, 69–87.
  • Werner, F. 1967. Röntgen-Radiographie zur Untersuchung von Sedimentstrukturen. Umschau, 16, 532.
  • Wetzel, A. 1981. Ökologische und stratigraphische Bedeutung biogener Gefüge in quartären Sedimenten am NW-afrikanischen Kontinentalrand. “Meteor” Forschungs-Ergebnisse, Reihe C, 34, 1–47.
  • Wetzel, A. 1984. Bioturbation in deep-sea fine-grained sediments: influence of sediment texture, turbidite frequency and rates of environmental change. In:. Stow, D.A.V and Piper, D.J.W. (Eds), Fine-Grained Sediments: Deep-Water Processes and Facies. Geological Society London Special Publications, 15, 595–608.
  • Wetzel, A. 1991. Ecologic interpretation of deep-sea trace fossil communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 85, 47–69.
  • Wetzel, A. 2002. Modern Nereites in the South China Sea – ecological association with redox conditions in the sediment. Palaios, 17, 507–515.
  • Wetzel, A. 2008. Recent bioturbation in the deep South China Sea: A uniformitarian ichnologic approach. Palaios, 23, 601–615.
  • Wetzel, A. in press. The preservation potential of ash layers in the deep-sea: the example of the 1991-Pinatubo ash in the South China Sea. Sedimentology, 56.
  • Wetzel, A. and Balson, P. 1992. Sedimentology of finegrained turbidites inferred from continuously recorded physical properties data. Marine Geology, 104, 165–178.
  • Wetzel,A. and Uchman,A. 1998. Deep-sea benthic food content recorded by ichnofabrics: a conceptual model based on observations from Paleogene flysch, Carpathians, Poland. Palaios, 13, 533–546.
  • Wetzel, A. and Uchman, A. 2001. Sequential colonization of muddy turbidites in the Eocene Beloveža Formation, Carpathians, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 168, 171–186.
  • Wetzel, A., Blechschmidt, I., Uchman, A. and Matter, A. 2007.A highly diverse ichnofauna in Late Triassic deepsea fan deposits of Oman. Palaios, 22, 567–576.
  • Wheatcroft, R.A. 1990. Preservation potential of sedimentary event layers. Geology, 18, 843–845.
  • Wiesner, M.G., Zheng, L., Wong, H.K., Wang, Y. and Chen, W. 1996. Fluxes of particulate matter in the South China Sea. In: Ittekot, V., Schäfer, P., Honjo, S. and Depetris, P.J. (Eds), Particle Flux in the Ocean. SCOPE Series, 57, 293–312.Wiley; New York.
  • Wigham, B.D., Hudson, I.R., Billett, D.S.M. and Wolff, G.A. 2003. Long-termchange in the abyssal Northeast Atlantic driven by qualitative changes in export flux? Evidence from selective feeding in deep-sea holothurians. Progress in Oceanography, 59, 407–432.
  • Wighman, B.D., Galley, E.A., Smith, C.R. and Tyler, P.A. 2008. Inter-annual variability and potential for selectivity in the diets of deep-water Antarctic echinoderms. Deep-Sea Research II, 55, 2478–2490.
  • Xie, S.-P., Xie, Q., Wang, D. and Liu, W.T. 2003. Summer upwelling in the South China Sea and its role in regional climate variations. Journal of Geophysical Research, 108, 3261, doi: 10.1029/21003JC001867.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2714-0257
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.