PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Autotrophic versus heterotrophic production and components of trophic chain in humic lakes : The role of microbial communities

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ratio and rates of autotrophic and heterotrophic pathways of organic matter cycles constitute the basic functions of aquatic ecosystem and humic lakes are unique in this respect. The autotrophic and heterotrophic production, the food web structure and the role of microbial communities in three humic lakes (area 1.3-9.2 ha) were studied. The abundance of bacteria, autotrophic picoplankton (APP), nanoflagellates (NF), ciliates, phytoplankton, rotifer and crustacean zooplankton as well as chlorophyll a and primary ([^14]C method) and bacterial production ([^3]H-thymidine method) were measured. The lakes differed in humic matter content, water colour, pH and hydrology. Two lakes were acidic (pH 5.2-4.9) with different dissolved organic carbon (DOC) content: oligo/mesohumic - 7.1 mg C L[^-1] , and polyhumic lake - 21 mg C L[^-1]. Due to draining of surrounding meadows, the third lake - formerly humic - experienced changes in the hydrological regime together with liming and fertilisation. Despite low DOC, the oligohumic lake resembled a low productive, typically humic, acidic lake with dominating bacterial production. The lake was characterised by the highest crustaceans biomass and very variable chlorophyll a concentration (between 1.5 and 71 mg Chl a m[^-3]). The polyhumic lake had the highest mean and maximal chlorophyll a content but the lowest crustacean biomass, and functioned more like a eutrophic lake. The formerly humic lake had lost probably most of its humic features and experienced a eutrophication process that resulted in a food web structure typical of a shallow eutrophic pond-like environment. The mean chlorophyll a concentration there was at the same level as in an oligohumic lake, but the variability was much lower. This lake can be considered as an example of the posthumic lakes abundant in the managed wetland regions. Microbial communities were numerous in both humic lakes, with bacteria prevailing in microbial biomass in the oligo-humic and APP in the polyhumic lake. In the former humic lake the microbial communities, especially APP, seemed to play a lesser role, while the whole planktonic food web was more balanced. The results demonstrated that uncontrolled drainage and reclamation of wetland can be detrimental to biodiversity of small, mid-forest lakes. Although biodiversity in almost all plankton groups was the highest in the posthumic lake but this lake lacked rare species typical of humic acidic lakes like: Gonyostomum semen, Dictyosphaerium sphagnale from phytoplankton or Holopedium gibberum from crustacean zooplankton. Instead eurytopic species, common in eutrophic waters, were present.
Rocznik
Strony
423--439
Opis fizyczny
Bibliogr. 64 poz.,
Twórcy
autor
Bibliografia
  • 1. Arvola L., Eloranta P., Jarvinen M., Keskitalo J., Holopianen A-L. 1999 – Phytoplankton (In Limnology of humic waters, Eds. J. Keskitalo, P. Eloranta) – Backhuys Publishers, Leiden, pp. 137–171.
  • 2. Arvola L., Kankaala P. 1989 – Winter and spring variability in phyto- and bacterioplankton in lakes with different water colour – Aqua Fennica, 19: 29–39.
  • 3. Arvola L., Kankaala P. Tulonen T., Ojala A. 1996 – Effects of phosphorus and allochthonous humic matter enrichment on the metabolic processes and community structure of plankton in a boreal lake (Lake Paajarvi) – Can. J. Fish. Aquat. Sci. 53: 1646–1662.
  • 4. Arvola L., Metsälä T-R., Similä A., Rask M. 1990 – Phyto- and zooplankton in relation to water pH and humic content in small lakes in Southern Finland – Verh. Internat. Verein. Limnol. 24: 688–692.
  • 5. Azam F., Fenchel T., Field J.G., Gray J.S., Meyer-Reil L.A., Thingstad F. 1983 – The ecological role of water column microbes in the sea – Mar. Ecol. Prog. Ser. 10: 257–263.
  • 6. Bergström A-K., Jansson M., Drakare S., Blomqvist P. 2003 – Occurrence of mixotrophic flagellates in relation to bacterioplankton production, light regime and availability of inorganic nutrients in unproductive lakes with differing humic contents – Freshwater Biology, 48: 868–877.
  • 7. Bottrell H.M., Duncan A., Gliwicz Z.M., Grygierek E., Herzig A., Hillbricht-Ilkowska A., Kurosawa A., Larson P., Węgleńska T. 1976 – A review of some problems in zooplankton production studies – Norw. J. Zool. 24: 419–456.
  • 8. Børsheim K.Y., Bratbak G. 1987– Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from sea water – Mar. Ecol. Prog. Ser. 36: 171–175.
  • 9. Callieri C., Stockner J.G. 2002 – Freshwater autotrophic picoplankton: a review – J. Limnol. 61: 1–14.
  • 10. Chróst R.J., Faust M.A. 1983 – Organic carbon release by phytoplankton: its composition and utilization by bacterioplankton – Plankton Res. 5: 477–493.
  • 11. Chróst R.J., Overbeck J., Wcisło R. 1988 – Evaluation of the [3H] Thymidine method for estimating bacterial growth rates and production in lake water: re-examination and methodological comments – Acta Microbiol. Polonica. 37: 95–112.
  • 12. Coveney M.F., Wetzel R.G. 1992 – Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures – Appl. Environ. Microbiol. 58: 150–156.
  • 13. Craig S.R. 1987 – The distribution and contribution of picoplankton to deep photosynthetic layers in some meromictic lakes – Acta Acad. Abo. 47: 55–81.
  • 14. Cuvin-Aralar M.L., Focken U., Becker K., Aralar E.V. 2004 – Effects of low nitrogen-phosphorus ratios in the phytoplankton community in Laguna de Bay, a shallow eutrophic lake in the Philippines – Aquatic Ecol. 38: 387–401.
  • 15. Daniel C., Gutseit K., Anesio A.M., Graneli W. 2005 – Microbial food webs in the dark: independence of lake plankton recent algal production – Aquat. Microb. Ecol. 38: 113–123.
  • 16. Dawidowicz P. 1990 – Effectiveness of phytoplankton control by large-bodied and smallbodied zooplankton – Hydrobiologia, 200–201: 43–47.
  • 17. Dowgiałło A. 1984 – Simplified photometric methods of determination of ammonia and Kjeldahl nitrogen in biological materials – Pol. Arch. Hydrobiol. 31: 317–339.
  • 18. Drakare S. 2002 – Competition between picoplanktonic cyanobacteria and heterotrophic bacteria along crossed gradients of glucose and phosphate – Microb. Ecol. 44: 327–335.
  • 19. Drakare S., Blomqvist P., Bergström A., Jansson M. 2003 – Relationships between picophytoplankton and environmental variables in lakes along a gradient of water colour and nutrient content – Freshwater Biology, 48: 729–740.
  • 20. Ejsmont-Karabin J. 1998 – Empirical equations for biomass calculation of planktonic rotifers – Pol. Arch. Hydrobiol. 45: 513–522.
  • 21. Eloranta P. 1986 – Phytoplankton structure in different lake types in central Finland – Holarct. Ecol. 9: 214–224.
  • 22. Foissner W., Berger H., Schaumburg J. 1999 – Identification and ecology of limnetic plankton ciliates – Bayer. Landesamt für Wasserwirtschaft, München, 793 pp.
  • 23. Foissner W., Berger H., Blatterer H., Kohmann F. 1991–95 – Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems. Band I–IV – Bayer. Landesamt für Wasserwirtschaft, München, 2061 pp.
  • 24. Golterman H.L., Clymo R.S. 1978 – Methods for physical & chemical analysis of fresh waters. IBP Handbook No. 8 – Blackwell Scientific Publications, Oxford, Edinburgh, London, Melbourne, 214 pp.
  • 25. Hepperle D., Krienitz L. 2001 – Systematics and ecology of chlorophyte picoplankton in German inland waters along a nutrient gradient – Internat. Rev. Gesamten Hydrobiol. 86: 269–284.
  • 26. Hessen D.O., Andersen T., Lynche A. 1990 – Carbon metabolism in a humic lake: pool size and cycling through zooplankton – Limnol. Oceanogr. 35: 84–99.
  • 27. Hillbricht-Ilkowska A., Rybak J.I., Kajak Z., Dusoge K., Ejsmont-Karabin J., Spodniewska I., Węgleńska T., Godlewska-Lipowa W.A. 1977 – Effect of liming on a humic lake – Ekol. Pol. 25: 379–420.
  • 28. Hillbricht-Ilkowska A., Dusoge K., Ejsmont-Karabin J., Jasser I., Kufel L., Ozimek T., Rybak J.I., Rzepecki M., Węgleńska T. 1998 – Long term effects of liming in a humic lake: ecosystem processes, biodiversity, food web functioning (Lake Flosek, Masurian Lakeland, Poland) – Pol. J. Ecol. 46: 347–415.
  • 29. Jasser I. 1997 – The dynamics and importance of picoplankton in shallow, dystrophic lake in comparison with surface waters of two deep lakes with contrasting trophic status – Hydrobiologia, 342/343: 87–93.
  • 30. Jasser I., Arvola L. 2001 – Seasonal coupling of autotrophic picoplankton and phytoplankton in three boreal lakes – Verh. Internat. Verein. Limnol. 28: 190–193.
  • 31. Jasser I., Arvola L. 2003 – Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes – J. Plankton Res. 25: 873–883.
  • 32. Johansson J-Å. 1983 – Seasonal development of bacterioplankton in two forest lakes in central Sweden – Hydrobiologia, 101: 71–88.
  • 33. Jones R.I. 1992 – The influence of humic substances on lacustrine planktonic food chains – Hydrobiologia, 229: 73–91.
  • 34. Jürgens K., Jeppsen E. 2000 – The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake – J. Plankton Res. 22: 1047–1070.
  • 35. Keskitalo K., Eloranta P. 1999 – Limnology of Humic Waters – Backhuys Publishers, 284 pp.
  • 36. Krienitz L., Takeda H., Hepperle D. 1999 – Ultrastructure, cell wall composition, and phylogenetic position of Pseudodictyosphaerium jurisii (Chlorococales, Chlorophyta) including a comparison with other picoplanktonic green algae – Phycologia, 38: 100–107.
  • 37. Kruk M. 2000 – Biogeochemical functioning of hydrologically modified peatlands and its effect in eutrophication of freshwaters – Pol. J. Ecol. 48: 103–161.
  • 38. Kukkonen S., Koponen T., Arvola L. 1997 – Abundance of phototrophic and heterotrophic picoplankton in boreal lakes of varying trophic state and humic matter content – Verh. Internat. Verein. Limnol. 26: 502–507.
  • 39. Lee S., Fuhrman J. 1987 – Relationship between biovolume and biomass of naturally derived marine bacterioplankton – App. Environ. Microbiol. 53: 1298–1303.
  • 40. Malinsky-Rushansky N., Berman T. 1991 – Picocyanobacteria and bacteria in lake Kinneret – Int. Rev. Gesamten Hydrobiol. 76: 555–564.
  • 41. Marker A.F.H., Nush E.A., Rai, H., Riemann B. 1980 – The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations of the workshop (In: Proceedings of the workshop on the measurement of photosynthetic pigments in freshwaters and standardization of methods, Ed. H. Rai) – Arch. Hydrobiol./Beih. Ergebn. Limnol. 14, pp. 91–106.
  • 42. Olem H. 1991 – Liming acidic surface waters – Lewis Publishers, Michigan, 331 pp.
  • 43. Pilke A., Heinonen P., Karttunen K., Koskenniemi E., Lepistö L., Petiläinen O.-P., Rissanen J., Vuoristo H. 2002 – Finnish draft for typology of lakes and rivers – TemaNord, 566: 42–43.
  • 44. Porter K.G., Feig Y.S. 1980 – The use of DAPI for identifying and counting aquatic microflora – Limnol. Oceanogr. 25: 943–948.
  • 45. Putt M., Stoecker D.K. 1989 – An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters – Limnol. Oceanogr. 34: 1097–1103.
  • 46. Reynolds C.S., Huszar V., Kruk C., Naseli-Flores L., Melo S. 2002 – Towards a functional classification of the freshwater phytoplankton – J. Plankton Res. 24: 417–428.
  • 47. Ricker W.E. 1975 – Computation and interpretation of biological statistics of fish populations. Bulletin 191 – Department of the Environment, Fisheries and Marine Service, Ottawa, 382 pp.
  • 48. Salonen K., Hammar T. 1986 – On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters – Oecologia, 68: 246–253.
  • 49. Salonen K., Arvola L., Tulonen T., Hammar T., Metsälä T.-R., Kankaala P., Münster U. 1992 a – Planktonic food chains of a highly humic lake. I. A mesocosm experiment during the spring primary production maximum – Hydrobiologia, 229: 125–142.
  • 50. Salonen K., Jokinen S. 1988 – Flagellate grazing on bacteria in a small dystrophic lake – Hydrobiologia, 161: 203–209.
  • 51. Salonen K., Kankaala P., Tulonen T., Hammar T., James M., Metsälä T.R., Arvola L. 1992 b – Planktonic food chains of a highly humic lake. II. A mesocosm experiment in summer during dominance of heterotrophic processes – Hydrobiologia, 229: 143–157.
  • 52. Søndergaard M. 1991 – Phototrophic picoplankton in temperature lakes: seasonal abundance and importance along a trophic gradient - Int. Rev. Gesamten Hydrobiol. 76: 505–522.
  • 53. Spodniewska I. 1974 – The structure and production of phytoplankton in Mikołajskie Lake - Ekol. Pol. 22: 65–106.
  • 54. Stockner J.G., Antia N.J. 1986 – Algal picoplankton from marine and freshwater: a multidisciplinary perspective – Can. J. Fish. Aquat. Sci. 43: 2472–2503.
  • 55. Sterner R.W. 1995 – Elemental stoichiometry of species in ecosystems (In Linking species and ecosystems, Eds. C.G. Jones, J.H. Lawton) - Chapman and Hall, N.Y. pp. 240–252.
  • 56. Telesh I.V., Rahkola M., Viljanen M. 1998 - Carbon content of some freshwater rotifers – Hydrobiologia, 387/388: 355–360.
  • 57. Tranvik L. 1988 – Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content – Microb. Ecol. 16: 311–322.
  • 58. Tranvik L. 1990 – Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters – Appl. Environ. Microbiol. 56: 1672–1677.
  • 59. Tranvik L. 1994 – Effects of colloidal organic matter on the growth of bacteria and protists in lake water – Limnol. Oceanogr. 39: 1276–1285.
  • 60. Tulonen T., Salonen K., Arvola L. 1992 – Effects of different molecular weight fractions of dissolved organic matter on the growth of bacteria, algae and protozoa from a highly humic lake – Hydrobiologia, 229: 239–252.
  • 61. Utermohl H. 1958 – Zur Vervollkommnung der quatitativen Phytoplankton-Methodik – Int. Verein. Theoretische Angew. Limnol. 9: 1–38.
  • 62. Verity P.G., Robertson C.Y., Tronzo C.R., Andrews M.G., Nelson J.R., Sieracki, M.E. 1992 – Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton – Limnol. Oceanogr. 37: 1434–1446.
  • 63. Weisse T. 1993 – Dynamics of autotrophic picoplankton in marine and freshwater ecosystems (In: Advances in Microbial Ecology, Ed. J.G. Jones) – Plenum Press, NY, 1, pp. 327–370.
  • 64. Wetzel R. 2001 – Limnology. Third edition – Academic Press, U.S.A. 1006 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2714-0220
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.