PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Age-related relationship between annual productivity and body size of trees : testing the metabolic theory

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metabolic theory of ecology predicts a 3/4 power relationship between annual productivity P[T] and body size M[T] (i.e., P [is proportional to] M[^3/4]), which has important implications to estimates of carbon fluxes, ecosystem health, global carbon budgets, and a variety of other phenomena. To test this prediction, we examined a large dataset for Chinese forests. Such dataset covers six major forest biomes and a total of 17 forest types grown across a range of annual temperature (-6.6 to 25.2[degrees]C), mean annual rainfall (27 to 2989 mm), elevation (10 to 4240 m a.s.l.), and stand age (3 to 350 yrs.). Reduced major axis (RMA) regression analyses were used to compare the P[T] versus M[T] scaling exponents and normalization constants (i.e., slopes and Y-intercepts of log-log linear relationships, respectively). Comparisons were made for ten different age-sequences (stand age ranges from 20 to 200 yrs). When stand age was less than 100 yrs, relationship of P[T] versus M[T] had similar scaling exponents ([alpha][RMA]>> 1.0), while the Y-intercepts decreased systematically. When stand age exceeded 140 yrs, scaling exponents decreased ([alpha][RMA] <0.86). Both the aboveground annual productivity and aboveground body size per individual tree (P[A] and M[A], respectively) showed the same behavior. We therefore conclude that the relationship of P[T] versus M[T] systematically declined with the stand age, and was inconsistent with the predictions of metabolic theory.
Rocznik
Strony
441--449
Opis fizyczny
Bibliogr. 34 poz.,Tab., wykr.,
Twórcy
autor
autor
autor
  • College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian Province 350007, China, wanggx@zju.edu.cn
Bibliografia
  • 1. Belgrano A., Allen A.P., Enquist B.J., Gillooly J.F. 2002 – Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants – Ecol. Lett. 5: 611–613.
  • 2. Berger U., Hildenbrandt H., Grimm V. 2004 – Age-related decline in forest production: modeling the effects of growth limitation, neighborhood competition and self-thinning – J. Ecol. 92: 846–853.
  • 3. Brown J.H., Gillooly J.F., Allen A.P., Savage V.M., West G.B. 2004 – Towards a metabolic theory of ecology – Ecology, 85: 1771–1789.
  • 4. Calder W.A. 1984 – Size, Function and Life History – Harvard University Press, Cambridge, Mass, 431 pp.
  • 5. Cannell M.G.R. 1982 – World Forest Biomass and Primary Production Data – Academic Press, London, 391pp.
  • 6. Enquist B.J. 2003 – Scaling the macroecological and evolutionary implications of size and metabolism within and across plant taxa (In: Macroecology: Pattern and Process, Eds. T. Blackburn, K. Gaston) – Oxford University Press, Oxford, pp. 321–341.
  • 7. Enquist B.J., Niklas K.J. 2001 – Invariant scaling relations across tree-dominated communities – Nature, 415: 655–660.
  • 8. Enquist B.J., Brown J.H., West G.B. 1998 – Allometric scaling of plants energetics and population density – Nature, 395: 163–165.
  • 9. Enquist B.J., West G.B., Charnov E.L., Brown J.H. 1999 – Allometric scaling of production and life-history variation in vascular plants – Nature, 401: 907–911.
  • 10. Enquist B.J., Economo E.P., Huxman T.E., Allen A.P., Ignace D.D., Gillooly J.F. 2003 – Scaling metabolism from organism to ecosystems – Nature, 423: 639–642.
  • 11. Ernest S.K.M., Enquist B.J., Brown J.H., Charnov E.L., Gillooly J.F., Savage V.M. et al. 2003 – Thermodynamic and Metabolic Effects on the Scaling of Production and Population Energy Use – Ecol. Lett. 6: 990–995.
  • 12. Gower S.T., McMurtrie R ., Murty D. 1996 – Aboveground net primary production decline with stand age: potential causes – Trends Ecol. Evol. 11: 378–382.
  • 13. Kleiber M. 1932 – Body size and metabolism – Hilgardia, 6: 315–353.
  • 14. Li H.T., Han X.G., Wu J.G. 2005 – Lack of evidence for 3/4 scaling of metabolism in terrestrial plants – J. Integ. Plant Biol. 47: 1173–1183.
  • 15. Luo T.X. 1996 – Patterns of biological production and its mathematical models for main forest types of China – Committee of Synthesis Investigation of Natural Resources, the Chinese Academy of Sciences, Beijing.
  • 16. Marquet P.A., Quiñones R.A., Abades S., Labra F., Tognelli M., Arim M., Rivadeneira M. 2005 – Scaling and powerlaws in ecological systems – J. Exp. Biol. 208: 1749–1769.
  • 17. McMurtrie R.E., Gholz H.L., Linder S., Gower S.T. 1994 – Climatic factors controlling the productivity of pine stands: a modelbased analysis – Ecol. Bull. 43: 173–188.
  • 18. Ni J., Zhang X.S., Scurlockc J.M. O. 2001 – Synthesis and analysis of biomass and net productivity in Chinese forests – Ann. For. Sci. 58: 351–384.
  • 19. Niklas K.J. 1994 – Plant Allometry: The Scaling of Form and Process – University of Chicago Press, Chicago, IL. 395 pp.
  • 20. Niklas K.J. 2005 – Modeling below- and aboveground biomass for woody and woody plants – Ann. Bot. 95: 315–321.
  • 21. Niklas K.J. 2006 – Plant Allometry, Leaf Nitrogen and Phosphorus Stoichiometry, and Interspecific Trends in Annual Growth Rates – Ann. Bot. 97: 155–163.
  • 22. Niklas K.J., Enquist B.J. 2001 – Invariant scaling relationships for interspecific plant biomass production rates and body size – Proc. Nat. Acad. Sci. USA, 98: 2922–2927.
  • 23. Niklas K.J., Owens T., Reich P.B., Cobb E.D. 2005 – Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth – Ecol. Lett. 8: 636–642.
  • 24. Oren R., Ellsworth D.S., Johnsen K.H., Phillipsk N., Ewers B.E., Maier C. et al. 2001 – Soil fertility limits carbon sequestration by forest ecosystems in a CO2 enriched world – Nature, 411: 469–472.
  • 25. Peters R.H. 1986 – The Ecological Implications of Body Size – Cambridge University Press, Cambridge, 329 pp.
  • 26. Reich P.B., Tjoelker M.G., Machado J.L., Oleksyn J. 2006a – Universal scaling of respiratory metabolism, size and nitrogen in plants – Nature, 439: 457–461.
  • 27. Reich P.B., Hobbie S.E., Lee T., Ellsworth D.S., West J.B., Tilman D., Knops J.M.H., Naeem S., Trost J. 2006b – Nitrogen limitation constrains sustainability of ecosystem response to CO2 – Nature, 440: 922–925.
  • 28. Peterson A.G., Ball J.T., Luo Y., Field C.B., Curtis P.S., Griffin K. L. et al. 1999 – The photosynthesis-leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: A meta-analysis – Glob. Change Biol. 5: 331–346.
  • 29. Ryan M.G., Waring R.H. 1992 – Maintenance respiration and stand development in a subalpine lodgepole pine forest – Ecology, 73: 2100–2108.
  • 30. Weiner J., Thomas S.C. 2001 – The nature of tree growth and the “age-related decline in forest productivity” – Oikos, 94: 374–376.
  • 31. West G.B., Brown J.H., Enquist B.J. 1997 – A general model for the origin of allometric scaling laws in biology – Science, 276: 122–126.
  • 32. West G.B., Brown J.H., Enquist B.J. 1999a – The fourth dimension of life: Fractal geometry and allometric scaling of organisms – Science, 284: 1677–1679.
  • 33. West G.B., Brown J.H., Enquist B.J. 1999b – A general model for the structure and allometry of plant vascular systems – Nature, 400: 664–667.
  • 34. West G.B., Brown J.H., Enquist B.J. 2001 – A general model for ontogenetic growth – Nature, 413: 628–631.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2714-0185
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.