Odwracanie się prądów powietrznych bocznego i głównego w systemie wentylacji kopalni o schodzącym przewietrzaniu czynnych nadpoziomowych robót wydobywczych w czasie pożarów węgla w schodzącym prądzie niezależnym

Powietrze kopalniane traktowano jako mieszaninę czystego powietrza suchego i pary wodnej, jego przepływy turbulentne – jako jednowymiarowe ustalone z wymianą masy i ciepła. Korzystano ze związków psychrometrycznych, metody termodynamicznej i teorii potencjału aerodynamicznego. Wobec braku adekwatnej rzeczywistej kopalni za obiekt badania przyjęto system wentylacji kopalni wirtualnej o schodzącym przewietrzaniu dwu grup czynnych nadpoziomowych robót wydobywczych. Korzystano z wcześniejszej pracy, gdzie w miejsce czynnych robót wydobywczych występują projektowane roboty wydobywcze. Wyprowadzono stopnie bezpieczeństwa oraz warunki zachowania pierwotnych kierunków prądów bocznego i głównego i ich bezruchu - dotyczące siedmiu struktur topologicznych (o znamiennych cechach) wymienionego systemu wentylacji. Uzyskane stopnie bezpieczeństwa oraz warunki bezruchu prądów bocznego i głównego przedstawiono graficznie za pomocą pięciokąta krzywoliniowego.

Słowa kluczowe: bezpieczeństwo, warunek zachowania pierwotnego kierunku prądu bocznego/głównego i stopień bezpieczeństwa, warunek bezruchu prądu bocznego/głównego i stopień bezpieczeństwa, pięciokąt krzywoliniowy.

1. WPROWADZENIE

Znane jest badanie grawimetryczne zjawiska odwracania się prądów powietrznych bocznego i głównego w czasie pożarów węgla w kopalniach o wznoszącym się/schodzącym przewietrzaniu nadpoziomowych robót wydobywczych w czasie pożarów węgla [1, 2, 3]. Również znane jest badanie termodynamiczne tego zjawiska w przypadku kopalni o schodzącym przewietrzaniu projektowanych nadpoziomowych robót wydobywczych [7]. Wciąż jeszcze nie przeprowadzono badania termodynamicznego tegoż zjawiska w przypadku kopalni o schodzącym przewietrzaniu czynnych nadpoziomowych robót wydobywczych. Zapełnienie tej luki było celem niniejszej pracy.

2. ZAŁOŻENIA, OBIEKT BADANIA I METODA

Powietrze kopalniane traktujemy jako mieszaninę czystego powietrza suchego (czynnik termodyna-

miczny), pary wodnej i kropelek ciekłej wody, jego przepływy turbulentne – jako jednowymiarowe ustalone, z wymianą masy i ciepła, stację wentylatorów głównych – jako bocznicę systemu wentylacji, energię kinetyczną powietrza kopalnianego i opory miejscowe – jako pomijalnie małe. Wobec braku adekwatnej rzeczywistej kopalni za obiekt badania przyjmujemy siedem struktur topologicznych (o określonych cechach) systemu wentylacji wirtualnej kopalni z dwiema grupami I, II czynnych nadpoziomowych robót wydobywczych o schodzącym przewietrzaniu (rys. 1).

Korzystamy z następujących związków psychrometrycznych od (1) do (5) określających: e_{sw} – ciśnienie cząstkowe pary wodnej nasyconej przy temperaturze t_m (termometru mokrego), X_s – stopień zawilżenia powietrza nasyconego parą wodną przy temperaturze t_m , L_w – ciepło utajone parowania wody przy temperaturze t_m , X – stopień zawilżenia powietrza nienasyconego parą wodną przy temperaturze t_m , e – ciśnienie cząstkowe pary wodnej nienasyconej przy temperaturze t_m [9]:

$$v_s = v_1 \left[1 - \frac{\kappa - 1}{\kappa} \cdot \frac{1 + X_1}{p_1 v_1} \cdot g(z - z_1) \right]^{\frac{1}{1 - \kappa}}$$
(8)

$$\Phi = v_s \left(p - p_s \right) \tag{9}$$

(7)

Następującymi wzorami od (10) do (17) określone są wielkości dotyczące bocznic systemu wentylacji (rys. 1): n – wykładnik politropy, l_t i l_{ts} – jednostkowe prace techniczne w przepływach politropowym i izentropowym, e_n – lokalny ciąg naturalny generowany w bocznicy, e_u – energia użyteczna wentylatora głównego, e_f – dyssypacja energii mechanicznej, R_f – opór aerodynamiczny bocznicy [5]:

$$n = \frac{\ln(p_w/p_d)}{\ln(v_d/v_w)} \tag{10}$$

$$\delta \Phi = \Phi_d - \Phi_w \tag{11}$$

$$l_{t} = \frac{n}{1-n} (p_{w}v_{w} - p_{d}v_{d})$$
(12)

$$l_{ts} = \frac{\kappa}{1-\kappa} p_d v_1 (p_1 / p_d)^{\frac{1}{\kappa}} \left[\left(p_w / p_d \right)^{\frac{\kappa-1}{\kappa}} - 1 \right]$$
(13)

$$e_n = l_t - l_{ts} \tag{14}$$

$$e_{u} = -l_{t} + \left(1 + \frac{1}{2}(X_{d} + X_{w})\right) \cdot g(z_{w} - z_{d})$$
(15)

$$e_f = \delta \Phi + e_n + e_u \tag{16}$$

$$R_f = \frac{e_f}{n \xi^2} \tag{17}$$

gdzie:

- *p* ciśnienie barometryczne (w przepływie politropowym),
- $R_a = 287,04 \text{ J/(kg p.s. K)} \text{indywidualna stała gazo$ wa czystego powietrza suchego,

 $\kappa = 1,40 - wykładnik izentropy tego powietrza,$

 $g = 9,81 \text{ m/s}^2 - \text{miejscowe przyspieszenie grawitacyjne,}$)_d i)_w - dolne indeksy wskazujące, że dana wielkość dotyczy odpowiednio przekroju dopływu, d, i przekroju wypływu, w, powietrza z bocznicy, j, (d - w), *n***k** - strumień masy czystego powietrza suchego.

Rys. 1. System wentylacji kopalni o schodzącym przewietrzaniu grup (I), (II) czynnych nadpoziomowych robót wydobywczych

$$e_{sw} = 610, 6 \cdot \exp\left[\frac{17, 27 \cdot t_m}{237, 3 + t_m}\right]$$
(1)

$$X_s = 0,622 \frac{e_{sw}}{p - e_{sw}} \tag{2}$$

$$L_w = (2502, 5 - 2, 386t_m) \cdot 1000 \tag{3}$$

$$X = \frac{L_w X_s - 1005 \cdot (t - t_m)}{L_w + 1884 \cdot (t - t_m)}$$
(4)

$$e = \frac{pX}{0,622 + X} \tag{5}$$

Zgodnie z metodą termodynamiczną i teorią potencjału aerodynamicznego za pomocą następujących wzorów od (6) do (9) określone są wielkości dotyczące węzłów systemu wentylacji (rys. 1): p_s – ciśnienie i v_s – objętość właściwa czystego powietrza suchego – w przepływie izentropowym, Φ – potencjał aerodynamiczny odniesiony do jednostki strumienia masy tego powietrza, v – jego pozorna objętość właściwa w przepływie politropowym [5]:

$$v = \frac{R_a(273,15+t)}{p-e}$$
(6)

Wyznaczenie pól ciśnienia cząstkowego pary wodnej nienasyconej dotyczących pierwszej struktury topologicznej (rys. 2) systemu wentylacji (rys. 1)

Węzeł	Ciśnienie barome- tryczne	Temp	Temperatura termometru suchego mokrego		Stopień zawilżenia powietrza nasyconego parą wodną	Ciepło utajone parowania wody przy temperaturze <i>t_m</i>	Stopień zawil- żenia powietrza nienasyconego parą wodną	Ciśnienie pary v nienas przy temp	cząstkowe vodnej yconej eraturze <i>t_m</i>
i	n	sucnego	t	raturze l_m	Y	I	Y	0	n
1	P Pa	<i>i</i>	ι_m	Pa	kg/kg ns	L _w I/kg wody	ka/kans	e P	P_p
1	100000	8.0	7.5	1036	0.006511	2484605	0.006306	1004	1004
2	111360	15,6	14,2	1619	0,009176	2468619	0,008597	1518	1518
3	112756	18,1	16,8	1912	0,010729	2462415	0,010188	1817	1818
4	110423	19,7	18,6	2142	0,012304	2458120	0,011844	2063	2064
5	109747	17,2	16,2	1841	0,010612	2463847	0,010196	1769	1766
6	109747	90,0	85,0	58040	0,698182	2299690	0,693158	57842	57687
7	110693	50,0	44,0	9096	0,055688	2397516	0,052924	8580	8668
8	110423	37,9	28,8	3958	0,023124	2433783	0,019231	3310	3310
9	94176	28,7	27,5	3669	0,025214	2436885	0,024696	3596	3596
10	99760	31,7	28,7	3935	0,025542	2434029	0,024247	3749	3742

Tabela 2

Wielkości dotyczące węzłów pierwszej struktury (rys. 2) systemu wentylacji (rys. 1)

Waral	Wysokość	Pozorna objętość właściwa	Ciśnienie	Objętość właściwa	Potencjał	
w ęzei	geodezyjna	w przepływie politropowym	w przepływie i	zentropowym	aerodynamiczny	
i	Ζ	v	p_s	Vs	Φ	
1	m	m³/kg p.s.	Pa	m³/kg p.s.	J/kg p.s.	
1	0	0,815198	100000	0,815198	0	
2	-950	0,754564	111985	0,751882	-470	
3	-1200	0,753571	115302	0,736368	-1875	
4	-1200	0,775744	115302	0,736368	-3593	
5	-950	0,771843	111985	0,751882	-1683	
6	-950	2,008257	111985	0,751882	-1683	
7	-1200	0,909266	115302	0,736368	-3394	
8	-1200	0,833548	115302	0,736368	-3593	
9	0	0,956536	100000	0,815198	-4748	
10	30	0,911340	99637	0,817317	100	

Tabela 3

Wielkości dotyczące bocznic i oczek zewnętrznego, *z*, wewnętrznego, *w*, pierwszej struktury topologicznej (rys. 3) systemu wentylacji (rys. 1)

Bocznica		Wykładnik politropy	Spadek potencjału aerodyna- micznego	Jednostkowa praca techniczna w przepływie: politropo- wym wym		Lokalny ciąg naturalny	Energia użyteczna wentylatora głównego	Dyssypacja energii mechanicz- nej	Strumień masy czy- st. powie- trza such.	Opór aerodyna- miczny
i d-w		п	$\delta \Phi$	l_t	l_{ts}	e _n	e _u	e_f	nsk	R_{f}
5		-		J/kg p.s.			J/kg p.s.	kg p.s./s	m²/kg² p.s.	
1	1-2	1,392212	470	-8904	-8908	4	-	474	200	0,011700
2	2-3	9,460391	1405	-1053	-1049	-4	-	1401	80	0,218750
3	3-4	0,720973	1718	1786	1759	27	-	1745	80	0,272656
4	2-5	0,644426	1213	1231	1224	7	-	1220	120	0,098611
5	6-7	0,032678	1910	-1159	- 514	-645	-	1265	120	0,074028
6	8-9	1,156408	1155	14492	13048	1444	-	2599	200	0,066350
7	9-10	1,189987	-4848	-5215	-4654	-561	5527	118	200	0,002725
8	10-1	0,021553	100	-207	-196	-11	-	89	200	0,002225
Oczko zewnętrzne, <i>z</i> , obeji bocznice: 1, 2, 3, 6, 7 i 8		<i>z,</i> obejmujące , 7 i 8	0	899	0	899	5527	5616	_	_
Oczko bocznie	Oczko wewnętrzne, <i>w</i> , obejmuj bocznice: 2, 3, 5 i 4		0	661	0	661	-	661	-	_

3. PIERWSZA STRUKTURA (RYS. 2) SYSTEMU WENTYLACJI (RYS. 1)

Znamienne cechy tej struktury topologicznej: pierwotne kierunki prądów bocznego i głównego; stan samonagrzewania węgla określony punktem zagrożenia pożarowego o temperaturze 90°C [4]; brak strumienia masy wypływu bocznego: $\Delta n = 0$.

Rys. 2. Pierwsza struktura topologiczna systemu wentylacji (rys. 1)

3.1. Podstawowe wielkości i związki

Dane wejściowe: wielkości dotyczące węzłów systemu wentylacji (rys. 1): ciśnienie barometryczne, p, temperatury: t i t_m odpowiednio termometru suchego i mokrego (tab. 1), wysokości geodezyjne, z (tab. 2); strumienie masy czystego powietrza suchego, n 80, 120, 120, 200, 200 odpowiednio w bocznicach: b, w₁, w₂, z_1 , z_2 (rys. 2) [7].

Korzystając z danych wejściowych – za pomocą adekwatnych wzorów od (1) do (17) – obliczyliśmy wielkości dotyczące węzłów: e_{sw} , X_S , L_w , X, e(tab. 1), v, p_s , v_s , Φ (tab. 2), wielkości: n, $\delta\Phi$, l_t , l_{ts} , e_n , e_u , e_f , R_f dotyczące bocznic (rys. 1, tab. 3) oraz wielkości dotyczące oczek zewnętrznego, z, i wewnętrznego, w, (rys. 2, tab. 3):

 wypadkowe ciągi naturalne generowane w oczkach: z i w:

$$e_{nz} = \sum_{(z)} e_n = 899, \qquad e_{nw} = \sum_{(w)} e_n = 661 \,\text{J/kg p.s.}$$
(18)

- energia użyteczna wentylatora głównego:

$$e_u = 5527 \quad J/kg p.s.$$
 (19)

 dyssypacje energii mechanicznej w bocznicach wypadkowych: b, w1, w2, z1, z2 (rys. 2, tab. 3):

$$e_{fb} = e_{f2} + e_{f3} = 1401 + 1745 = 3146$$

$$e_{fw1} = e_{f4} = 1220, \quad e_{fw2} = e_{f5} = 1265$$

$$e_{z1} = e_{f1} = 474, \ e_{fz2} = e_{f6} + e_{f7} + e_{f8} = 2806$$
(20)

3.2. Równania oczkowe

Dla oczek zewnętrznego, *z*, i wewnętrznego, *w*, pierwszej struktury topologicznej (rys. 2) systemu wentylacji (rys. 1) – opisanych wielkościami ujętymi za pomocą wzorów (18), (19), (20) – ważne są następujące równania oczkowe:

$$e_u + e_{nz} = e_{fb} + e_{fz1} + e_{fz2} \tag{21}$$

$$e_{nw} = e_{fb} - e_{fw1} - e_{fw2}$$
(22)

3.3. Warunek zachowania pierwotnego kierunku prądu bocznego i stopień bezpieczeństwa

Z podzielenia stronami równania (22) przez równanie (21) wynika wyrażenie:

$$\frac{e_{nw}}{e_{u} + e_{nz}} = \frac{e_{fb} - e_{fw1} - e_{fw2}}{e_{fb} + e_{fz1} + e_{fz2}}$$
(23)

Wyrażenie to przekształcamy następująco:

$$\frac{e_{nw}}{e_{u} + e_{nz}} = \frac{e_{fb} - e_{fw1} - e_{fw2}}{e_{fb} + e_{fz1} + e_{fz2}} < \frac{e_{fw1} + e_{fw2}}{e_{fz1} + e_{fz2}}$$
$$\frac{e_{fw1} + e_{fw2}}{e_{fz1} + e_{fz2}} > \frac{e_{nw}}{e_{u} + e_{nz}} \left| \cdot \frac{e_{u} + e_{nz}}{e_{nw}} \right|$$

Wynikiem zaznaczonego mnożenia jest następująca nierówność:

$$\frac{e_u + e_{nz}}{e_{nw}} \cdot \frac{e_{fw1} + e_{fw2}}{e_{fz1} + e_{fz2}} > 1$$

Zapisujemy ją w postaci

$$\sigma_h > 1 \tag{24}$$

$$\sigma_b = \frac{e_u + e_{nz}}{e_{nw}} \cdot \frac{e_{fw1} + e_{fw2}}{e_{fz1} + e_{fz2}}$$
(25)

Nierówność (24) jest warunkiem zachowania pierwotnego kierunku prądu bocznego, płynącego bocznicą b od węzła 2 do węzła 4, σ_b – stopniem bezpieczeństwa. Podstawiając do wzoru (25) wartości adekwatnych wielkości (tabl. 2, rys. 2), otrzymujemy:

$$\sigma_b = \frac{5527 + 899}{661} \cdot \frac{1220 + 1265}{474 + 2806} = 7,3653 \quad (25a)$$

3.4. Warunek zachowania pierwotnego kierunku prądu głównego i stopień bezpieczeństwa

Wyrażenie (23) przekształcamy następująco:

$$\frac{e_{nw}}{e_u + e_{nz}} = \frac{e_{fb} + e_{fw1} - e_{fw2}}{e_{fb} + e_{fz1} + e_{fz2}} < \frac{e_{fb}}{e_{fb} + e_{fz1} + e_{fz2}}$$

Stąd otrzymujemy:

$$\frac{e_{fb}}{e_{fb} + e_{fz1} + e_{fz2}} > \frac{e_{nw}}{e_u + e_{nz}}$$

Po pomnożeniu obu stron tej nierówności przez odwrotność jej prawej strony wynika:

$$\frac{e_u + e_{nz}}{e_{nw}} \frac{e_{fb}}{e_{fb} + e_{fz1} + e_{fz2}} > 1$$

Nierówność tę zapisujemy w postaci:

$$\sigma_w > 1 \tag{26}$$

$$\sigma_{w} = \frac{e_{u} + e_{nz}}{e_{nw}} \cdot \frac{e_{fb}}{e_{fb} + e_{fz1} + e_{fz2}}$$
(27)

Nierówność (26) jest warunkiem zachowania pierwotnego kierunku prądu głównego, płynącego bocznicą w₁ od węzła 2 do węzła 5 (rys. 2), σ_w – stopniem bezpieczeństwa. Podstawiając do wzoru (27) wartości adekwatnych wielkości (tab. 3, rys. 2), otrzymujemy:

$$\sigma_w = \frac{5527 + 899}{661} \cdot \frac{3146}{3146 + 474 + 2806} = 7,8301 \quad (27a)$$

4. DRUGA STRUKTURA (RYS. 3) SYSTEMU WENTYLACJI (RYS. 1)

Znamienne cechy tej struktury topologicznej: pierwotny kierunek prądu bocznego płynącego od węzła 2 do węzła 4, bezruch prądu głównego; stan samonagrzewania węgla określony punktem pirolizy o temperaturze 180°C; strumień masy wypływu bocznego: $\Delta n = 30$.

Rys. 3. Druga struktura topologiczna systemu wentylacji (rys. 1)

4.1. Podstawowe wielkości i związki

Dane wejściowe: opory aerodynamiczne: R_{fb} , R_{fz1} , R_{fz2} bocznic wypadkowych: b, z_1 , z_2 struktury (rys. 3) – według ostatniej kolumny tabeli 3:

$$R_{fb} = R_{f2} + R_{f3} = 0,218750 + 0,272656 = 0,491406$$

$$R_{f21} = R_{f1} = 0,011700$$

$$R_{f22} = R_{f6} + R_{f7} + R_{f8} = 0,066350 + 0,002725 + 0,002225 = 0,071300$$
(28)

Wielkości dotyczące węzłów: ciśnienia barometryczne: p, temperatury t i t_m odpowiednio termometru suchego i mokrego [7] (tab. 4) oraz wysokość geodezyjna, z, [7] (tab. 5).

Korzystając z powyższych danych i postępując analogicznie jak w przypadku pierwszej struktury topologicznej, obliczyliśmy wielkości dotyczące węzłów (tab. 4, tab. 5), wielkości dotyczące bocznic (tab. 6) oraz następujące wielkości dotyczące odpowiednio oczka zewnętrznego, *z*, i oczka wewnętrznego, *w*, (rys. 3, tab. 6):

 wypadkowe ciągi naturalne generowane odpowiednio w oczku zewnętrznym, z, i oczku wewnętrznym, w, (rys. 3):

$$e_{nz} = \sum e_n = 678, \ e_{nw} = \sum_w e_n = 848$$
 (29)

- energia użyteczna wentylatora głównego:

$$e_u = 7079$$
 (30)

Wyznaczenie pól ciśnienia cząstkowego pary wodnej nienasyconej dotyczących drugiej struktury topologicznej (rys. 3) systemu wentylacji (rys. 1)

Węzeł	Ciśnienie barome- tryczne	Temp termo	eratura ometru	Ciśnienie cząstkowe pary wodnej nasyconej przy tempera-	Stopień zawil- żenia powie- trza nasycone- go parą wodną	Ciepło utajone parowania wody przy temperaturze	Stopień zawil- żenia powie- trza nienasy- conego parą wodna	Ciśnienie pary v nienas przy temp	cząstkowe vodnej yconej eraturze <i>t_m</i>	
		suchego	mokrego	turze t_m		•m				
i	р	t	t_m	e_{sw}	X_s	L_w	X	е	p_p	
	Pa	0	°C		kg/kg p.s.	J/kg wody	kg/kg p.s.	F	a	
1	100000	8,0	7,5	1036	0,006511	2484605	0,006306	1004	1004	
2	111691	16,6	15,0	1704	0,009636	2466710	0,008983	1590	1589	
3	111574	19,1	18,1	2076	0,011796	2459313	0,011379	2004	2004	
4	107334	20,7	19,3	2238	0,013245	2456450	0,012659	2141	2141	
5	111691	18,2	16,9	1924	0,010902	2462177	0,010361	1830	1830	
6	111691	180,0	65,0	25025	0,179604	2347410	0,119353	17982	16753	
7	107334	60,0	50,0	12331	0,045871	2407060	0,036942	6017	5990	
8	107334	31,0	26,5	3460	0,020718	2439271	0,018799	3149	3149	
9	92262	21,8	18,3	2102	0,014501	2458836	0,013035	1894	1894	
10	99703	24,8	21,6	2579	0,016516	2450962	0,015166	2373	2374	

Tabela 5

Wielkości dotyczące węzłów, i, drugiej struktury topologicznej (rys. 3) systemu wentylacji (rys. 1)

Wazał	Wysokość	Pozorna objętość właściwa	Ciśnienie	Objętość właściwa	Potencjał	
۷۷ ÇZC1	geodezyjna	w przepływie politropowym	w przepływie i	zentropowym	aerodynamiczny	
i	Ζ	ν	p_s	v_s	Φ	
1	m	m³/kg p.s.	Pa	m³/kg p.s.	J/kg p.s.	
1	0	0,815198	100000	0,815198	0	
2	-950	0,755396	111985	0,751882	-221	
3	-1200	0,765795	115302	0,736368	-2765	
4	-1200	0,801828	115302	0,736368	-5867	
5	-950	0,761226	111985	0,751882	-221	
6	-950	1,035787	111985	0,751882	-221	
7	-1200	0,943843	115302	0,736368	-5867	
8	-1200	0,837963	115302	0,736368	-5867	
9	0	0,936863	100000	0,815198	-6308	
10	30	0,878706	99637	0,817317	54	

Tabela 6

Wielkości dotyczące bocznic, j, oraz oczek zewnętrznego, z, i wewnętrznego, w, drugiej struktury topologicznej (rys. 3) systemu wentylacji (rys. 1)

Bocznica		Wykładnik politropy	Spadek poten- cjału aerody- namicznego	Jednostko techn w prze politropo- wym	owa praca iiczna pływie: izentropo- wym	Lokalny ciąg naturalny	Energia użyteczna wentylatora głównego	Dyssypacja energii mechanicznej	Strumień masy czy- stego powie- trza suchego
i d-w		п	$\delta \Phi$	l_t	l_{ts}	e_n	e_u	e_f	nse
J	a ii	-		J/kg p.s.	•		kg p.s./s		
1	1-2	1,451258	221	-9169	-9157	-12	-	209	109,124
2	2-3	0,094358	2544	108	108	0	-	2544	109,124
3	3-4	0,837340	3102	3356	3220	136	-	3238	109,124
4	2-5	0		0	0	0	-	0	0
5	6-7	-0,428232	5646	4312	3328	984	-	6630	30
6	8-9	1,356399	441	13342	12319	1023	-	1464	139,124
7	9-10	1,211854	-6362	-6708	-6248	-460	7079	257	139,124
8	10-1	0,039649	54	-251	-242	-9	-	45	139,124
Oczko zewnętrzne, <i>z</i> , obejmujące bocznice: 1, 2, 3, 6, 7 i 8		, <i>z</i> , obejmujące , 7 i 8	0	678	0	678	7079	7757	-
Oczko wewnętrzne, <i>w</i> , obejmujące bocznice: 2, 3, 5 i 4		e, w, obejmujące 4	0	848	0	848	_	848	_

 dyssypacje energii mechanicznej w bocznicach wypadkowych: b, w₁, w₂, z₁, z₂ (rys. 3, tab. 6):

$$e_{fb} = e_{f2} + e_{f3} = 2544 + 3238 = 5782$$

$$e_{fw1} = e_{f4} = 0, \quad e_{fw2} = e_{fw5} = 6630,$$

$$e_{f21} = e_{f1} = 209$$

$$e_{f22} = e_{f6} + e_{f7} + e_{f8} = 1464 + 257 + 45 = 1766$$

$$(31)$$

4.2. Równania oczkowe

Dla oczek z i w struktury topologicznej (rys. 3) słuszne są równania oczkowe:

$$e_u + e_{nz} = e_{fb} + e_{fz1} + e_{fz2} \tag{32}$$

$$e_{nw} = e_{fw2} - e_{fb} \tag{33}$$

4.3. Warunek bezruchu prądu głównego i stopień bezpieczeństwa

Zmieniamy kolejność stron równań (32) i (33). Dzielimy stronami zmodyfikowane równanie (33) przez zmodyfikowane równanie (32) i wykonujemy następujące przekształcenia:

$$\frac{e_{fw2} - e_{fb}}{e_{fb} + e_{fz1} + e_{fz2}} = \frac{e_{nw}}{e_u + e_{nz}} \cdot \frac{e_u + e_{nz}}{e_{nw}}$$

Wynikiem zaznaczonego mnożenia jest równość:

$$\frac{e_u + e_{nz}}{e_{nw}} \cdot \frac{e_{fw2} - e_{fb}}{e_{fb} + e_{fz1} + e_{fz2}} = 1$$

Zapisujemy ją w postaci:

$$\sigma_w = 1 \tag{34}$$

$$\sigma_{w} = \frac{e_{u} + e_{nz}}{e_{nw}} \cdot \frac{e_{fw2} - e_{fb}}{e_{fz1} + e_{fz1} + e_{fz2}}$$
(35)

Równość (34) jest warunkiem bezruchu prądu głównego w bocznicy w₁ (rys. 3), σ_w – stopniem bezpieczeństwa. Podstawiając do prawej strony wzoru (35) wartości adekwatnych wielkości (tab. 6, rys. 3), otrzymujemy:

$$\sigma_w = \frac{7079 + 678}{848} \cdot \frac{6630 - 5782}{5782 + 209 + 1766} = 1 \quad (35a)$$

4.4. Strumień masy powietrza w bocznicach b, z₁ (rys. 3)

Korzystając ze wzoru (17) i oporów: R_b, R_{z1} (28), zapisujemy równanie (32) w postaci:

$$(R_b + R_{z1}) \cdot n \mathcal{R}^2 = e_u + e_{nz} - e_{fz2}$$

z której wynika wzór określający szukany strumień masy powietrza:

$$n\& = \sqrt{\frac{e_u + e_{nz} - e_{fz2}}{R_b + R_{z1}}}$$
(36)

Podstawiając do wzoru (36) wartości adekwatnych oporów (28) i wielkości (rys. 3, tab. 6), mamy:

$$n\& = \sqrt{\frac{7079 + 678 - 1766}{0,491406 + 0,011700}} = 109,124 \quad (36a)$$

W ostatniej kolumnie tabeli 6 podane są strumienie masy powietrza we wszystkich bocznicach drugiej struktury (rys. 3) systemu wentylacji (rys. 1).

5. TRZECIA STRUKTURA (RYS. 4) SYSTEMU WENTYLACJI (RYS. 1)

Znamienne cechy tej struktury topologicznej: bezruch prądu bocznego w bocznicy b, pierwotny kierunek prądu głównego płynącego w bocznicy w_1 od węzła 2 do węzła 5; stan samonagrzewania węgla określony punktem pirolizy o temperaturze 180°C; strumień masy wypływu bocznego: $\Delta n = 30$.

5.1. Podstawowe wielkości i związki

Dane wejściowe: wielkości dotyczące węzłów systemu wentylacji (rys. 1): ciśnienia barometryczne, p, temperatury: t i t_m odpowiednio termometru suchego i mokrego (tab. 7), wysokości geodezyjne, z (tab. 8) [7].

Korzystając z powyższych wielkości i postępując analogicznie jak w przypadku pierwszej struktury, obliczyliśmy wielkości dotyczące węzłów (tab.7, tab.8), wielkości dotyczące bocznic (tab. 9) oraz następujące wielkości dotyczące oczek *z*, *w*, (rys. 4, tab. 9):

 wypadkowe ciągi naturalne generowane w wymienionych oczkach:

$$e_{nz} = \sum_{(Z)} e_n = 677, \ e_{nw} = \sum_{(w)} e_n = 1486 \,\text{J/kg p.s.}$$
 (37)

- energia użyteczna wentylatora głównego:

$$e_{\mu} = 1782 \,\mathrm{J/kgp.\,s.}$$
 (38)

 dyssypacje energii mechanicznej w bocznicach wypadkowych: b,w1, w2, z1, z2:

$$\begin{array}{c} e_{fb} = e_{f2} + e_{f3} = 0, \quad e_{fw1} = e_{f4} = 303, \\ e_{fw2} = e_{f5} = 1183, \quad e_{fz1} = e_{f1} = 404, \\ e_{fz2} = e_{f6} + e_{f7} + e_{f8} = 1737 + 215 + 103 = 2055 \end{array}$$

$$(39)$$

5.2. Równania oczkowe

Dla oczek zewnętrznego, *z*, i wewnętrznego, *w*, trzeciej struktury topologicznej (rys. 4) systemu wentylacji (rys. 1) ważne są następujące równania oczkowe:

$$e_u + e_{nz} = e_{fz1} + e_{fz2} \tag{40}$$

$$e_{nw} = e_{fw1} + e_{fw2}$$
 (41)

5.3. Warunek bezruchu prądu bocznego i stopień bezpieczeństwa

Z podzielenia stronami równania (41) przez równanie (40) wynika wyrażenie:

$$\frac{e_{nw}}{e_u + e_{nz}} = \frac{e_{fwl} + e_{fw2}}{e_{fz1} + e_{fz2}}$$
(42)

Przekształcamy je następująco:

$$\frac{e_{fw1} + e_{fw2}}{e_{fz1} + e_{fz2}} = \frac{e_{nw}}{e_u + e_{nz}} \left| \cdot \frac{e_u + e_{nz}}{e_{nw}} \right|$$

Wynikiem zaznaczonego mnożenia jest równość:

$$\frac{e_{u} + e_{nz}}{e_{nw}} \cdot \frac{e_{fw1} + e_{fw2}}{e_{fz1} + e_{fz2}} = 1$$

Zapisujemy ją w postaci:

$$\sigma_b = 1 \tag{43}$$

$$\sigma_b = \frac{e_u + e_{nz}}{e_{nw}} \cdot \frac{e_{fw1} + e_{fw2}}{e_{fz1} + e_{fz2}}$$
(44)

Równość (44) jest warunkiem bezruchu prądu bocznego w bocznicy wypadkowej b (rys. 4), wielkość σ_b – stopniem bezpieczeństwa. Podstawiając do prawej strony wzoru (44) wartości adekwatnych wielkości (tab. 8, rys. 4), otrzymujemy:

$$\sigma_b = \frac{1782 + 677}{1486} \cdot \frac{303 + 1183}{404 + 2055} = 1 \tag{44a}$$

5.4. Strumień masy powietrza w bocznicach w₁ i z₁

Przekształcamy równanie oczkowe (40) do postaci:

$$R_{fz1}n \mathscr{E} = e_u + e_{nz} - e_{fz2}$$

Stąd wynika następujący wzór określający strumień masy czystego powietrza suchego płynącego w bocznicach wypadkowych w_1 , z_1 (rys. 4):

$$m^{k} = \sqrt{\frac{e_{u} + e_{nz} - e_{fz2}}{R_{fz1}}}$$
(45)

Podstawiając do wzoru (45) wartości oporu R_{fz1} (28) bocznicy z_1 i adekwatnych wielkości (rys. 5, tab. 12), zapisujemy:

$$n\& = \sqrt{\frac{1782 + 677 - 2055}{0,011700}} = 185,822 \text{ kg p.s./s}$$
(45a)

W ostatniej kolumnie tabeli 9 podane są strumienie masy czystego powietrza suchego we wszystkich bocznicach trzeciej struktury topologicznej (rys. 4) systemu wentylacji (rys. 1).

Wyznaczenie pól ciśnienia cząstkowego pary wodnej nienasyconej dotyczących trzeciej struktury topologicznej (rys. 4) systemu wentylacji (rys. 1)

Węzeł	Ciśnienie barome- tryczne	Temp	eratura ometru	Ciśnienie cząstkowe pary wodnej nasyconej przy tempera-	Stopień zawil- żenia powie- trza nasycone- go parą wodną	Ciepło utajone parowania wody przy temperaturze	Stopień zawil- żenia powie- trza nienasy- conego parą wodna	Ciśnienie pary v nienas przy temp	cząstkowe vodnej yconej eraturze <i>t_m</i>
		suchego	mokrego	turze t_m		e _m	woung		
i	р	t	t_m	e_{sw}	X_s	L_w	X	е	p_p
	Pa	0	°C		kg/kg p.s.	J/kg wody	kg/kg p.s.	Р	a
1	100000	8,0	7,5	1036	0,006511	2484605	0,006306	1004	1004
2	111427	16,6	15,0	1704	0,009660	2464801	0,008997	1594	1589
3	114745	19,1	18,1	2076	0,011461	2459313	0,011044	1949	2002
4	114745	20,7	19,3	2238	0,012373	2456450	0,011788	2078	2134
5	111024	18,2	16,9	1924	0,010969	2462177	0,010428	1831	1831
6	111024	180,0	65,0	25025	0,180997	2347410	0,120628	18034	16877
7	114745	60,0	50,0	12731	0,077623	2383200	0,072830	12027	11992
8	114745	31,0	26,5	3460	0,019339	2439271	0,017424	3127	3127
9	98327	21,8	18,3	2102	0,013587	2458836	0,012124	1880	1880
10	99772	24,8	21,6	2579	0,016505	2450962	0,015156	2373	2373

Tabela 8

Wielkości dotyczące węzłów trzeciej struktury topologicznej (rys. 4) systemu wentylacji (rys. 1)

	W 1 //	D 1: 4 // 1 //	Ciśnienie	Objętość właściwa	D (1
Węzeł	geodezyjna	w przepływie politropowym	w przepływie i	zentropowym	aerodynamiczny
i	Z	ν	p_s	v_s	Φ
1	m	m³/kg p.s.	Ра	m ³ /kg p.s.	J/kg p.s.
1	0	0,815198	100000	0,815198	0
2	-950	0,757240	111985	0,751882	-420
3	-1200	0,743709	115302	0,736368	-410
4	-1200	0,748637	115302	0,736368	-410
5	-950	0,765883	111985	0,751882	-722
6	-950	1,398776	111985	0,751882	-722
7	-1200	0,930970	115302	0,736368	-410
8	-1200	0,782161	115302	0,736368	-410
9	0	0,877813	100000	0,815198	-1364
10	30	0.878065	99637	0.817317	110

Tabela 9

Wielkości dotyczące bocznic, j, oraz oczek zewnętrznego, z, i wewnętrznego, w, trzeciej struktury topologicznej (rys. 4) systemu wentylacji (rys. 1)

Bocznica		Wykładnik politropy	Spadek poten- cjału aerody- namicznego	Jednostko techn w prze politropo- wym	owa praca niczna pływie: izentropo- wym	Lokalny ciąg naturalny	Energia użyteczna wentylatora głównego	Dyssypacja energii mechanicznej	Strumień masy czy- stego powie- trza suchego
j d-w		п	$\delta \Phi$	l_t	l_{ts}	en	eu	e_f	nsk
		—		J/kg p.s.	•		kg p.s./s		
1	1-2	1,467096	420	-8974	-8958	-16	-	404	185,822
2	2-3	1,627395	0	-2478	-2478	0	-	0	0
3	3-4	0	0	0	0	0	-	0	0
4	2-5	0,319254	300	307	304	3	-	303	185,822
5	6-7	0,080972	-300	-4265	-2782	-1483	-	1183	215,822
6	8-9	1,338386	954	13591	12808	783	-	1737	215,822
7	9-10	-50,826132	-1484	-1269	-1186	-83	1782	215	215,822
8	10-1	0,030726	110	-193	-186	-7	-	103	215,822
Oczko zewnętrzne, <i>z</i> , obejmujące bocznice: 1, 2, 3, 6, 7 i 8		0	677	0	677	1782	2459	_	
Oczko wewnętrzne, <i>w</i> , obejmujące bocznice: 2, 3, 5 i 4		0	1486	0	1486	_	1486	-	

6. CZWARTA STRUKTURA (RYS. 5) SYSTEMU WENTYLACJI (RYS. 1)

Znamienne cechy tej struktury topologicznej: pierwotny kierunek prądu bocznego płynącego w bocznicy b od węzła 2 do węzła 4, bezruch prądu głównego w bocznicy w₁; stan samonagrzewania węgla określony punktem zwrotnym o temperaturze 80°C; strumień masy wypływu bocznego: $\Delta n = 20$.

Rys. 5. Czwarta struktura topologiczna systemu wentylacji (rys. 1)

6.1. Podstawowe wielkości i związki

Dane wejściowe: wielkości dotyczące węzłów systemu wentylacji (rys. 1): ciśnienia barometryczne, p, temperatury: t i t_m odpowiednio termometru suchego i mokrego (tab.10) oraz wysokość geodezyjna, z(tab. 11) [7].

Korzystając z danych wejściowych i postępując analogicznie jak w przypadku pierwszej struktury, otrzymaliśmy wielkości dotyczące: węzłów (tab. 10, tab. 11), bocznic (tab. 12), jak i następujące wielkości dotyczące oczek z, w (rys. 5, tab. 12):

 wypadkowe ciągi naturalne generowane odpowiednio w oczkach z, w:

$$e_{nz} = \sum_{(z)} e_n = 252, \qquad e_{nw} = \sum_{(w)} e_n = 429 \,\text{J/kg p.s.}$$
(46)

- energia użyteczna wentylatora głównego:

$$e_u = 6420 \text{ J/kg p.s.}$$
 (47)

 dyssypacje energii mechanicznej w bocznicach wypadkowych: b, w1, w2, z1, z2:

$$e_{fb} = e_{f2} + e_{f3} = 5067, \ e_{fw1} = 0$$

$$e_{fw2} = e_{f5} = 5496,$$

$$e_{f21} = e_{f1} = 281,$$

$$e_{f22} = e_{f6} + e_{f7} + e_{f8} = 1324$$

$$(48)$$

6.2. Równania oczkowe, warunek bezruchu prądu głównego, stopień bezpieczeństwa

Topologia czwartej struktury (rys. 5) jest taka sama jak drugiej struktury (rys. 3). Dla tych struktur ważne są równania oczkowe: (32) i (33), warunek (34) bezruchu prądu głównego, stopień bezpieczeństwa (35) i wzór (36).

Podstawiając do wzorów (35) i (36) wartości wielkości określonych wzorami (46), (47), (48) (rys. 5), jak i oporów R_{fb} , R_{fz1} (28) bocznic b, $z_{1,}$, otrzymujemy:

$$\sigma_w = \frac{6420 + 252}{429} \cdot \frac{5496 - 5067}{5067 + 281 + 1324} = 1$$
(35b)

$$n\&=\sqrt{\frac{6420+252-1324}{0,491406+0,011700}}=103,102 \text{ kg p.s./s}$$
 (36b)

W ostatniej kolumnie tabeli 12 podane są strumienie masy czystego powietrza suchego we wszystkich bocznicach struktury (rys.5).

7. PIĄTA STRUKTURA (RYS. 6) SYSTEMU WENTYLACJI (RYS. 1)

Znamienne cechy tej struktury topologicznej: bezruch prądu bocznego w bocznicy b, pierwotny kierunek prądu głównego płynącego w bocznicy w_1 od węzła 2 do węzła 5, stan samonagrzewania węgla określony punktem zwrotnym o temperaturze 80°C; strumień masy wypływu bocznego: $\Delta n = 20$.

7.1. Podstawowe wielkości

Dane wejściowe: wielkości dotyczące węzłów systemu wentylacji (rys. 1): ciśnienia barometryczne, p, temperatury: t i t_m odpowiednio termometru suchego i mokrego (tab. 13) oraz wysokość geodezyjna, z (tab. 14) [7].

Korzystając z danych wejściowych i postępując analogicznie jak w przypadku pierwszej struktury, wyznaczyliśmy wielkości dotyczące węzłów (tab. 13, tab. 14), bocznic (tab. 15) oraz następujące wielkości dotyczące oczek: z, w (rys. 6, tab. 15):

Wyznaczenie pól ciśnienia cząstkowego pary wodnej nienasyconej dotyczących czwartej struktury topologicznej (rys. 5) systemu wentylacji (rys. 1)

Węzeł	Ciśnienie barome- tryczne	Temp termo	eratura ometru	Ciśnienie cząstkowe pary wodnej nasyconej przy tempera-	Stopień zawil- żenia powie- trza nasycone- go parą wodną	Ciepło utajone parowania wody przy temperaturze	Stopień zawil- żenia powie- trza nienasy- conego parą wodna	Ciśnienie pary v nienas przy temp	cząstkowe vodnej yconej eraturze <i>t_m</i>
		suchego	mokrego	turze t_m		• m			
i	р	t	t_m	$e_{_{SW}}$	X_s	L_w	X	е	p_p
	Pa	0	°C		kg/kg p.s.	J/kg wody	kg/kg p.s.	Ра	
1	100000	8,0	7,5	1004	0,006308	2484605	0,006103	972	972
2	111609	16,6	14,2	1446	0,008164	2468619	0,007174	1272	1273
3	111850	18,5	16,8	1783	0,010076	2462415	0,009370	1656	1660
4	108106	19,4	18,4	2046	0,011999	2458598	0,011581	1976	1977
5	111609	16,8	16,0	1760	0,009966	2464324	0,009634	1702	1702
6	111609	80,0	50,0	10174	0,062387	2383200	0,048584	8086	8018
7	108106	45,0	38,2	6220	0,037972	2411355	0,034952	5752	5746
8	108106	23,3	20,7	2259	0,013275	2453110	0,012185	2077	2078
9	92741	14,3	13,8	1547	0,010552	2469573	0,010344	1517	1517
10	99718	17,3	16,2	1770	0,012105	2463847	0,011646	1833	1833

Tabela 11

Wielkości dotyczące węzłów czwartej struktury topologicznej (rys. 5) systemu wentylacji (rys. 1)

	XX 1 //	D 1: (// 1 /)	Ciśnienie	Objętość właściwa	Deterraial	
Węzeł	wysokosc geodezyjna	w przepływie politropowym	w przepływie i	zentropowym	aerodynamiczny	
i	Z	v	p_s	v_s	Φ	
1	m	m³/kg p.s.	Pa	m ³ /kg p.s.	J/kg p.s.	
1	0	0,814934	100000	0,814934	0	
2	-950	0,753780	111986	0,751631	-283	
3	-1200	0,759708	115304	0,736120	-2542	
4	-1200	0,791233	115304	0,736120	-5298	
5	-950	0,757252	111986	0,751631	-283	
6	-950	0,979185	111986	0,751631	-283	
7	-1200	0,892215	115304	0,736120	-5298	
8	-1200	0,802545	115304	0,736120	-5298	
9	0	0,904473	100000	0,814934	-5916	
10	30	0.851722	99637	0.817053	66	

Tabela 12

Wielkości dotyczące bocznic oraz oczek zewnętrznego, z, i wewnętrznego, w, czwartej struktury topologicznej (rys. 5) systemu wentylacji (rys. 1)

Bocznica		Wykładnik politropy	Spadek poten- cjału aerody- namicznego	Jednostko techr w prze politropo- wym	owa praca hiczna pływie: izentropo- wym	Lokalny ciąg naturalny	Energia użyteczna wentylatora głównego	Dyssypacja energii mechanicznej	Strumień masy czy- stego powie- trza suchego
j d-w		п	$\delta \Phi$	l_t	l_{ts}	e_n	e_u	e_f	n&
		—		J/kg p.s.	•		kg p.s./s		
1	1-2	1,407977	283	-9094	-9092	-2	-	281	103,102
2	2-3	-0,275352	2259	-182	-182	0	-	2259	103,102
3	3-4	0,837380	2756	2903	2851	52	-	2808	103,102
4	2-5	0	0	0	0	0	-	0	
5	6-7	-0,342848	5015	3150	2669	481	-	5496	20
6	8-9	1,284872	618	12982	12499	483	-	1101	123,102
7	9-10	1,207069	-5982	-6122	-5846	-276	6420	162	123,102
8	10-1	0,063959	66	-235	-230	-5	-	61	123,102
Oczko zewnętrzne, <i>z</i> , obejmujące bocznice: 1, 2, 3, 6, 7 i 8		0	252	0	252	6420	6672	_	
Oczko wewnętrzne, <i>w</i> , obejmujące bocznice: 4, 5, 3 i 2		0	429	0	429	_	429	_	

Wyznaczenie pól ciśnienia cząstkowego pary wodnej nienasyconej dotyczących piątej struktury topologicznej (rys. 6) systemu wentylacji (rys. 1)

Węzeł	Ciśnienie barome- tryczne	Temperatura termometru		Ciśnienie cząstkowe pary wodnej nasyco- nej przy tempe- raturze <i>t_m</i>	Stopień zawil- żenia powie- trza nasycone- go parą wodną	Ciepło utajone parowania wody przy temperaturze t_m	Stopień zawil- żenia powie- trza nienasy- conego parą wodną	Ciśnienie pary v nienas przy temp	cząstkowe vodnej yconej eraturze <i>t_m</i>
		suchego	mokrego						
i	р	t	t_m	$e_{_{SW}}$	X_s	L_w	Х	е	p_p^s
	Pa	°C		Ра	Pa kg/kg p.s. J/kg v		kg/kg p.s.	P	a
1	100000	8,0	7,5	1036	0,006511	2484605	0,006306	1004	1003
2	111404	16,6	15,2	1726	0,009788	2466233	0,009208	1625	1623
3	115271	18,5	17,7	2024	0,011117	2460268	0,010784	1964	1963
4	115271	20,1	19,8	2308	0,012708	2455257	0,012582	2286	2285
5	111001	17,5	16,3	1852	0,010554	2463608	0,010055	1766	1764
6	111001	80,0	50,0	12331	0,077733	2383200	0,063574	10293	10125
7	115271	45,0	38,2	6693	0,038342	2411355	0,035320	6194	6174
8	115271	45,0	38,2	6693	0,038342	2411355	0,035320	6194	6174
9	98219	34,0	32,8	4972	0,033166	2424239	0,032638	4897	4894
10	99763	37,0	35,2	5682	0,037566	2418513	0,036764	5568	5564

Tabela 14

Wielkości dotyczące węzłów piątej struktury topologicznej (rys. 6) systemu wentylacji (rys. 1)

Węzeł	Wysokość	Pozorna objętość właściwa	Ciśnienie	Objętość właściwa	Potencjał	
	geodezyjna	w przepływie politropowym	w przepływie i	aerodynamiczny		
;	Z	ν	p_s	v_s	Φ	
1	m	m³/kg p.s.	Pa	m ³ /kg p.s.	J/kg p.s.	
1	0	0,815198	100000	0,815198	0	
2	-950	0,757612	111985	0,751882	-437	
3	-1200	0,738835	115302	0,736368	-437	
4	-1200	0,745006	115302	0,736368	-437	
5	-950	0,763749	111985	0,751882	-737	
6	-950	1,006555	111985	0,751882	-737	
7	-1200	0,837223	115302	0,736368	-437	
8	-1200	0,837223	115302	0,736368	-437	
9	0	0,944733	100000	0,815198	-1452	
10	30	0.945119	99637	0.817317	103	

Tabela 15

Wielkości dotyczące bocznic oraz oczek zewnętrznego, z, i wewnętrznego, w, piątej struktury topologicznej (rys. 6) systemu wentylacji (rys. 1)

Bocznica		Wykładnik politropy	Spadek poten- cjału aerody- namicznego	Jednostko techn w prze politropo- wym	owa praca iiczna pływie: izentropo- wym	Lokalny ciąg naturalny	Energia użyteczna wentylatora głównego	Dyssypacja energii mechanicznej	Strumień masy czy- stego powie- trza suchego
i	d-w	п	δΦ	l _t	l_{ts}	e _n	e _u	e_f	n&
J	a 11	—		J/kg p.s.	•		kg p.s./s		
1	1-2	1,474114	437	-8958	-8941	-17	-	420	189,466
2	2-3	1,359643	0	-2883	-2883	0	-	0	0
3	3-4	0	0	0	0	0	-	0	0
4	2-5	0,449195	300	304	304	0	-	300	189,466
5	6-7	0,204924	-300	-3923	-3187	-736	-	436	20
6	8-9	1,325086	983	15150	13285	1865	-	2848	209,466
7	9-10	-38,183073	-1523	-1459	-1268	-191	1664	-50	207,466
8	10-1	0,016046	103	-208	-193	-15	-	88	207,466
Oczko zewnętrzne, z, obejmujące bocznice: 1, 2, 3, 6, 7 i 8		0	1642	0	1642	1664	3306	_	
Oczko wewnętrzne, <i>w</i> , obejmujące bocznice: 2, 3, 5 i 4		0	736	0	736	-	736	_	

Rys. 6. Piąta struktura topologiczna systemu wentylacji (rys. 1)

 wypadkowe ciągi naturalne generowane w oczkach z, w:

$$e_{nz} = \sum_{(z)} e_n = 1642, \quad e_{nw} = \sum_{(w)} e_{nw} = 736 \text{ J/kg p.s.}$$
(49)

– energia użyteczna wentylatora głównego:

$$e_u = 1664 \text{ J/kg p.s.}$$
 (50)

 dyssypacje energii mechanicznej w bocznicach wypadkowych: b, w1, w2, z1, z2:

$$e_{fb} = e_{f2} + e_{f3} = 0, \quad e_{w1} = e_{f4} = 300$$

$$e_{fw2} = e_{f5} = 436, \quad e_{f21} = e_{f1} = 420$$

$$e_{f22} = e_{f6} + e_{f7} + e_{f8} = 2848 - 50 + 88 = 2886$$
(51)

7.2. Równania oczkowe, warunek bezruchu prądu bocznego, stopień bezpieczeństwa

Topologia piątej struktury (rys. 6) jest taka sama jak trzeciej struktury (rys. 4). Dla obu tych struktur prawdziwe są równania oczkowe (40), (41) oraz warunek (43) bezruchu prądu bocznego, stopień bezpieczeństwa (44) i wzór (45) określający strumień masy czystego powietrza suchego w bocznicach w₁ i z₁. Podstawiając do wzorów (44) i (45) odpowiednio wartości adekwatnych wielkości podanych na schemacie (rys. 6) i oporu R_{fz1} (28) bocznicy wypadkowej z₁, otrzymujemy:

$$\sigma_b = \frac{1664 + 1642}{736} \cdot \frac{300 + 436}{420 + 2886} = 1 \tag{44b}$$

$$n = \sqrt{\frac{1664 + 1642 - 2886}{0,011700}} = 189,466 \text{ kg p.s./s}$$
 (45b)

W ostatniej kolumnie tabeli 15 podane są strumienie masy czystego powietrza suchego we wszystkich bocznicach piątej struktury topologicznej.

8. SZÓSTA STRUKTURA (RYS. 7) SYSTEMU WENTYLACJI (RYS. 1)

Znamienne cechy tej struktury topologicznej: pierwotny kierunek prądu bocznego płynącego bocznicą b od węzła 2 do węzła 4, bezruch prądu głównego w bocznicy w₁; stan samonagrzewania węgla określony punktem krytycznym o temperaturze 60°C; strumień masy wypływu bocznego: $\Delta n = 15$.

Rys. 7. Szósta struktura topologiczna systemu wentylacji (rys. 1)

8.1. Podstawowe wielkości i związki

Dane wejściowe: wielkości dotyczące systemu wentylacji (rys. 1): ciśnienia barometryczne, p, temperatury: t i t_m , odpowiednio termometru suchego i mokrego (tab. 16) oraz wysokość geodezyjna, z (tab. 17) [7].

Korzystając z danych wejściowych i postępując analogicznie jak w przypadku pierwszej struktury, otrzymaliśmy wielkości dotyczące węzłów (tab. 16, tab. 17), bocznic (tab. 18) oraz następujące wielkości dotyczące oczek z, w (rys. 7, tab. 18):

 wypadkowe ciągi naturalne generowane w oczkach z, w:

$$e_{nz} = \sum_{(z)} e_n = 309, \quad e_{nw} = \sum_{(w)} e_n = 265 \,\text{J}/\text{kg p.s.}$$
 (52)

- energia użyteczna wentylatora głównego:

$$e_u = 5947 \text{ J/kg p.s.}$$
 (53)

Wyznaczenie pól ciśnienia cząstkowego pary wodnej nienasyconej dotyczących szóstej struktury topologicznej (rys. 7) systemu wentylacji (rys. 1)

Węzeł	Ciśnienie barome- tryczne	Temperatura termometru		Ciśnienie cząstkowe pary wodnej nasyconej przy tempera-	Stopień zawilżenia powietrza nasyconego para wodna	Ciepło utajone parowania wody przy temperaturze t _m	Stopień zawilże- nia powietrza nienasyconego parą wodną	Ciśnienie pary niena przy temj	cząstkowe wodnej syconej peraturze <i>t_m</i>
		suchego	mokrego	turze t_m					
i	р	t	t_m	e_{sw}	X_s	L_w	Х	е	p_p^s
	Pa	0	С	Pa	kg/kg p.s.	J/kg wody	kg/kg p.s.	Ра	
1	100000	8,0	7,5	1036	0,006511	2484605	0,006306	1004	1003
2	111525	16,6	14,8	1683	0,009530	2467187	0,009033	1596	1594
3	112150	18,5	17,0	1937	0,010932	2461938	0,010308	1828	1826
4	108877	20,1	18,8	2169	0,012643	2457643	0,012099	2077	2075
5	111525	17,5	16,0	1817	0,010302	2464324	0,009679	1709	1706
6	111525	60,0	45,0	9578	0,058437	2395130	0,051535	8533	8470
7	108877	30,0	28,4	3867	0,022905	2434738	0,022217	3755	3752
8	108877	21,4	19,2	2224	0,012970	2456689	0,012050	2069	2065
9	93213	14,4	13,8	1577	0,010704	2469573	0,010455	1541	1540
10	99673	17,4	15,0	1704	0,010819	2466710	0,009823	1550	1540

Tabela 17

Wielkości dotyczące węzłów szóstej struktury topologicznej (rys. 7) systemu wentylacji (rys. 1)

Wazał	Wysokość	Pozorna objętość właściwa	Ciśnienie	Objętość właściwa	Potencjał aerodynamiczny	
WÇZCI	geodezyjna	w przepływie politropowym	w przepływie iz	zentropowym		
i	Ζ	ν	p_s	Vs	Φ	
1	m	m³/kg p.s.	Pa	m³/kg p.s.	J/kg p.s.	
1	0	0,815198	100000	0,815198	0	
2	-950	0,755011	111985	0,751882	-346	
3	-1200	0,758826	115302	0,736368	-2321	
4	-1200	0,788150	115302	0,736368	-4731	
5	-950	0,759709	111985	0,751882	-346	
6	-950	0,928493	111985	0,751882	-346	
7	-1200	0,827764	115302	0,736368	-4731	
8	-1200	0,791585	115302	0,736368	-4731	
9	0	0,900366	100000	0,815198	-5533	
10	30	0,849948	99637	0,817317	0	

Tabela 18

Wielkości dotyczące bocznic oraz oczek zewnętrznego, *z*, i wewnętrznego, *w*, szóstej struktury topologicznej (rys. 7) systemu wentylacji (rys. 1)

Bocznica		Wykładnik politropy	Spadek poten- cjału aerody- namicznego	Jednostko techni w przep politropo- wym	wa praca iczna oływie: izentropo- wym	Lokalny ciąg naturalny	Energia użyteczna wentylatora głównego	Dyssypacja energii mechanicznej	Strumień masy czy- stego powie- trza suchego
i	d-w	п	$\delta \Phi$	l_t	l _{ts}	e _n	e_u	e_f	nsk
J	a w	-	J/kg p.s.				J/kg p.s.	•	kg p.s./s
1	1-2	1,422170	346	-9038	-9032	-6	-	340	97,361
2	2-3	-1,108785	1975	-473	-470	-3	-	1972	97,361
3	3-4	0, 781161	2410	2531	2484	47	-	2457	97,361
4	2-5	0	0	0	0	0	-	0	189,466
5	6-7	-0,209257	4385	2323	2014	309	-	4694	0
6	8-9	1,206327	802	13211	12690	521	-	1323	15
7	9-10	1,162798	-5533	-5650	-5405	-245	5947	169	112,361
8	10-1	0,078463	0	-272	-267	-5	-	-5	112,361
Oczko zewnętrzne, <i>z</i> , obejmujące bocznice: 1, 2, 3, 6, 7 i 8		0	30	0	309	5947	6256	112,361	
Oczko wewnętrzne, <i>w</i> , obejmujące bocznice: 4, 5, 3 i 2		0	265	0	265	-	265	_	

 dyssypacje energii mechanicznej w bocznicach wypadkowych: b, w₁, w₂, z₁, z₂:

$$e_{fb} = e_{f2} + e_{f3} = 1972 + 2457 = 4429, e_{fw1} = e_{f4} = 0,$$

$$e_{w2} = e_{f5} = 4694, \quad e_{f21} = e_{f1} = 340,$$

$$e_{f22} = e_{f6} + e_{f7} + e_{f8} = 1323 + 169 - 5 = 1487$$

$$(54)$$

8.2. Równania oczkowe, warunek bezruchu prądu głównego, stopień bezpieczeństwa i strumień masy powietrza w bocznicach b i z₁

Topologia szóstej struktury (rys. 7) jest taka sama jak drugiej struktury (rys. 3). Dla tych struktur ważne są równania oczkowe (32), (33) oraz warunek (34) bezruchu prądu głównego, stopień bezpieczeństwa (35) i wzór (36) określający strumień masy powietrza w bocznicach b i z₁.

Podstawiając do wzorów (35) i (36) wartości adekwatnych wielkości podanych na schemacie (rys. 7) i oporów aerodynamicznych (28) bocznic wypadkowych b, z₁ (rys. 7), otrzymujemy:

$$\sigma_w = \frac{5947 + 309}{265} \cdot \frac{4694 - 4429}{4429 + 340 + 1487} = 1 \quad (35c)$$

$$n\& = \sqrt{\frac{5947 + 309 - 1487}{0,491406 + 0,011700}} = 97,361 \text{ kg p.s./s} \quad (36c)$$

W ostatniej kolumnie tabeli 18 podane są strumienie masy powietrza we wszystkich bocznicach szóstej struktury (rys. 7) systemu wentylacji (rys. 1).

9. SIÓDMA STRUKTURA (RYS. 8) SYSTEMU WENTYLACJI (RYS. 1)

Znamienne cechy tej struktury topologicznej: bezruch prądu bocznego, pierwotny kierunek prądu głównego płynącego bocznicą w_1 od węzła 2 do węzła 5; stan samonagrzewania węgla określony punktem krytycznym o temperaturze 60°C; strumień masy wypływu bocznego: $\Delta n = 10$.

9.1. Podstawowe wielkości i związki

Dane wejściowe: wielkości dotyczące węzłów systemu wentylacji (rys. 1): ciśnienia barometryczne, p, temperatury: t i t_m odpowiednio termometru suchego i mokrego (tab. 19), wysokość geodezyjna, z, (tab. 20) [7].

Korzystając z danych wejściowych i postępując tak jak w przypadku trzeciej struktury (rys. 4), otrzymaliśmy wielkości dotyczące węzłów (tab. 19, tab. 20), bocznic (tab. 21) i następujące wielkości dotyczące oczek *z* i *w* (rys. 8, tab. 21):

Rys. 8. Siódma struktura topologiczna systemu wentylacji (rys. 1)

– wypadkowe ciągi naturalne w oczkach z, w:

$$e_{nz} = \sum_{(z)} e_n = 676, \qquad e_{nw} = \sum_{(w)} e_n = 356 \text{ J/kgp.s.}$$
 (55)

- energia użyteczna wentylatora głównego:

$$e_u = 1699 \,\mathrm{J/kgp.s.}$$
 (56)

dyssypacje energii mechanicznej w bocznicach:
 b, w1, w2, z1, z2:

$$e_{fb} = e_{f2} + e_{f3} = 0, \quad e_{fw1} = e_{f4} = 315, \\ e_{fw2} = e_{f5} = 41, \quad e_{f21} = e_{f1} = 426, \\ e_{f22} = e_{f6} + e_{f7} + e_{f8} = 1838 + 14 + 97 = 1949 \end{cases}$$
(57)

9.2. Równania oczkowe, warunek bezruchu prądu bocznego, stopień bezpieczeństwa i strumień masy powietrza w bocznicach z₁ i w₁

Topologia siódmej struktury (rys. 8) jest taka sama jak trzeciej struktury (rys. 4). Dla tych struktur ważne są równania oczkowe (40), (41) oraz warunek (43) bezruchu prądu bocznego, stopień bezpieczeństwa (44) i wzór (45) określający strumień masy, *n*%, czystego powietrza suchego w bocznicach wypadkowych z₁ i w₁.

Podstawiając do wzorów (44) i (45) wartości adekwatnych wielkości (tab. 21, rys. 8), mamy:

$$\sigma_b = \frac{1699 + 676}{356} \cdot \frac{315 + 41}{426 + 1949} = 1 \tag{44b}$$

$$n\& = \sqrt{\frac{1699 + 676 - 1949}{0,011700}} = 190,815 \text{ kg p.s./s}$$
 (45b)

Wyznaczenie pól ciśnienia cząstkowego pary wodnej nienasyconej dotyczących siódmej struktury topologicznej (rys. 8) systemu wentylacji (rys. 1)

Węzeł	Ciśnienie barome- tryczne	Temperatura termometru suchego mokrego		Ciśnienie cząstkowe pary wodnej nasyconej przy tempera-	Stopień zawil- żenia powie- trza nasycone- go parą wodną	Ciepło utajone parowania wody przy temperaturze	Stopień zawil- żenia powie- trza nienasy- conego parą wodna	Ciśnienie pary v nienas przy temp	cząstkowe vodnej yconej eraturze <i>t_m</i>
				turze t_m		Um .	woung		
i	р	t	t_m	$e_{_{SW}}$	X_s	L_w	Х	е	p_p^s
	Pa	°C		Pa	kg/kg p.s.	J/kg wody	kg/kg p.s.	Ра	
1	100000	8,0	7,5	1036	0,006511	2484605	0,006306	1004	1003
2	111394	16,0	15,0	1704	0,009662	2466710	0,009248	1632	1030
3	114711	18,5	17,7	2024	0,011172	2460268	0,010838	1964	1964
4	114711	20,1	19,1	2210	0,012219	2456927	0,011801	2136	2134
5	110990	17,5	16,8	1912	0,010903	2462415	0,010612	1862	1860
6	110990	60,0	40,0	7372	0,044253	2407060	0,035349	5968	5901
7	114711	30,0	27,0	3564	0,019945	2438078	0,018665	3342	3336
8	114711	30,0	27,0	3564	0,019945	2438078	0,018665	3342	3336
9	98172	20,6	19,7	2294	0,014882	2455496	0,014504	2237	2235
10	99766	23,6	22,2	2675	0,017137	2449531	0,016545	2585	2582

Tabela 20

Wielkości dotyczące węzłów siódmej struktury topologicznej (rys. 8) systemu wentylacji (rys. 1)

Wazał	Wysokość	Pozorna objętość właściwa	Ciśnienie	Objętość właściwa	Potencjał aerodynamiczny	
îî ç201	geodezyjna	w przepływie politropowym	w przepływie i	zentropowym		
i	Ζ	ν	p_s	v_s	Φ	
1	m	m³/kg p.s.	Pa	m³/kg p.s.	J/kg p.s.	
1	0	0,815198	100000	0,815198	0	
2	-950	0,756160	111985	0,751882	-435	
3	-1200	0,742505	115302	0,736368	-435	
4	-1200	0,747719	115302	0,736368	-435	
5	-950	0,764498	111985	0,751882	-748	
6	-950	0,910546	111985	0,751882	-748	
7	-1200	0,781332	115302	0,736368	-435	
8	-1200	0,781332	115302	0,736368	-435	
9	0	0,878908	100000	0,815198	-1490	
10	30	0,877312	99637	0,817317	105	

Tabela 21

Wielkości dotyczące bocznic oczek: z i w siódmej struktury topologicznej (rys. 8) systemu wentylacji (rys. 1)

Bocznica		Wykładnik politropy	Spadek potencjału aerodyna- micznego	Jednostko techn w prze politropo- wym	owa praca iczna pływie: izentropo- wym	Lokalny ciąg naturalny	Energia użyteczna wentylatora głównego	Dyssypacja energii mechanicznej	Strumień masy czy- stego powie- trza suchego
i	d-w	п	$\delta \Phi$	l_t	l_{ts}	e_n	e_u	e_f	n&
J	u-w	_		J/kg p.s.	•		J/kg p.s.	•	kg p.s./s
1	1-2	1,435303	435	-8942	-8933	-9	-	426	0
2	2-3	1,610154	0	-2477	-2477	0	-	0	0
3	3-4	0	0	0	0	0	-	0	190,815
4	2-5	0,331317	313	307	305	2	-	315	200,815
5	6-7	0,215466	-313	-3140	-2782	-354	-	41	200,815
6	8-9	1,323035	1055	13693	12910	783	-	1838	200,815
7	9-10	8,861647	-1595	-1400	-1310	-90	1699	14	200,815
8	10-1	0,031904	105	-198	-190	-8	-	97	-
Oczko zewnętrzne, z, obejmujące bocznice: 1, 2, 3, 6, 7 i 8		0	676	0	676	1699	2375	_	
Oczko wewnętrzne, <i>w</i> , obejmujące bocznice: 2, 3, 5 i 4		e, w, obejmujące 4	0	356	0	356	-	356	_

W ostatniej kolumnie tabeli 21 podane są strumienie masy czystego powietrza suchego we wszystkich bocznicach siódmej struktury (rys. 8) systemu wentylacji (rys. 1).

10. GRAFICZNE PRZEDSTAWIENIE WARUN-KÓW BEZRUCHU PRĄDÓW BOCZNEGO I GŁÓWNEGO

10.1. Krzywe opisujące bezruch prądów bocznego i głównego

Bezruch prądu bocznego przestawiony jest w trzech strukturach topologicznych (rys. 4, rys. 6, rys. 8). Na ich podstawie podaliśmy w prostokątnym układzie współrzędnych $\Delta n_{k}^{k} e_{mv}$ (rys. 9) punkty: B₁, B₂ i B₃ odpowiednio o współrzędnych:

$$\Delta m = 30, e_{nw} = 1486, \Delta m = 20, e_{nw} = 736, \Delta m = 10, e_{nw} = 356$$

Korzystając z powyższych współrzędnych i następującego równania paraboli:

1600
1400

$$\sigma_{b} > 1$$

 $\sigma_{w} > 1$
 $\sigma_{w} = 7.8653$
 $\sigma_{w} = 7.8631$
 $\sigma_{w} = 7.8301$
 $\sigma_{w} = 7.6301$
 $\sigma_{w} = 1$
 $\sigma_{w} < 1$

$$e_{nw} = a \left(\Delta n \delta\right)^2 + b \left(\Delta n \delta\right) + c \tag{58}$$

ułożyliśmy układ trzech równań liniowych o trzech niewiadomych: a, b, c. Kojarząc rozwiązanie tego układu z równaniem (58), uzyskaliśmy następujące równanie (59) krzywej opisującej bezruch prądu bocznego. Krzywa ta w punkcie A_2 o rzędnej $e_{mv} = 346$ przecina oś rzędnych układu (rys. 9):

$$e_{mv} = 1,85 \left(\Delta n \delta\right)^2 - 17,5 \left(\Delta n \delta\right) + 346 \tag{59}$$

Bezruch prądu głównego przedstawiony jest w trzech strukturach topologicznych (rys. 3, rys. 5, rys. 7). Korzystając z nich, podaliśmy we wspomnianym układzie punkty: G_1 , G_2 , G_3 odpowiednio o współrzędnych:

$$\Delta n = 30, e_{nw} = 848; \Delta n = 20, e_{nw} = 429; \Delta n = 15, e_{nw} = 265$$

Korzystając z tych współrzędnych i równania (58) – na analogicznej drodze jak w przypadku równania (59) – otrzymaliśmy następujące równanie (60) krzywej opisującej bezruch prądu głównego. Krzywa ta w punkcie A₃ o odciętej $\Delta m = 3,314$ przecina oś odciętych układu, a oś rzędnych w punkcie G₄ o rzędnej $e_{nv} = -45$ (rys. 9):

$$e_{nw} = 0,60667 \left(\Delta n \vartheta\right)^2 + 11,567 \left(\Delta n \vartheta\right) - 45 \tag{60}$$

10.2. Pięciokąt krzywoliniowy

Wierzchołkami pięciokąta krzywoliniowego (rys. 9) są punkty O, A₂, B₁, G₁, A₃. Odcinek A₂ – B₁ paraboli o równaniu (59) przedstawia warunek: $\sigma_b = 1$ bezruchu prądu bocznego, a odcinek O – A₃ osi odciętych i odcinek A₃ – G₁ paraboli o równaniu (60) przedstawiają warunek: $\sigma_w = 1$ bezruchu prądu głównego – przy strumieniu masy wypływu bocznego, Δn , od 0 do 30 kg p.s./s.

Punktu F na osi rzędnych dotyczą stopnie bezpieczeństwa: $\sigma_b = 7,3653$ i $\sigma_w = 7,8301$ określone wzorami (25a), (27a) spełniające warunki $\sigma_b > 1$, $\sigma_w > 1$ określone wzorami (24), (26). Warunki te dotyczą wszystkich punktów pola powyżej pięciokąta krzywoliniowego. W przypadku ich spełnienia zachowane są pierwotne kierunki obu prądów bocznego i głównego.

Do punktów wnętrza pięciokąta krzywoliniowego odnoszą się warunki: $\sigma_b < 1$, $\sigma_w > 1$. W przypadku ich spełnienia odwrócony jest prąd boczny, zachowany jest kierunek prądu głównego.

Punktów poniżej pięciokąta (rys. 9) dotyczą warunki: $\sigma_b < 1$, $\sigma_w < 1$; w przypadku ich spełnienia odwrócone są kierunki obu prądów bocznego i głównego.

11. ANALIZA UZYSKANYCH WYNIKÓW

11.1. Dla oczka obejmującego bocznice wypadkowe w_1 , w_2 , z_2 , z_1 pierwszej struktury topologicznej z pierwotnym kierunkiem obu prądów bocznego i głównego (rys. 2) ważne jest równanie oczkowe:

$$e_{u} + e_{nz} - e_{nw} = e_{fw1} + e_{fw2} + e_{fz2} + e_{fz1}$$
(61)

Podstawiając do lewej L i prawej P strony tego równania wartości adekwatnych wielkości podanych na rysunku 2, otrzymujemy:

L= 5527+899-661= 5765, P=1220+1265+2806+474=5765.

Wypadkowy ciąg naturalny e_{nw} określony drugim wzorem (18) jest wielkością dodatnią, wobec czego znak minus występujący przed ostatnim składnikiem lewej strony równania (61) oznacza, że wymieniony ciąg naturalny pracuje niezgodnie z wentylatorem głównym.

11.2. Dla wymienionego oczka drugiej, czwartej i szóstej struktury topologicznej z bezruchem prądu głównego (rys. 3, rys. 5, rys. 7) oraz trzeciej, piątej i siódmej struktury topologicznej z bezruchem prądu bocznego (rys. 4, rys. 6, rys. 8) słuszne jest równanie oczkowe:

$$e_{u} + e_{nz} + e_{nw} = e_{fw1} + e_{fw2} + e_{fz2} + e_{fz1}$$
(62)

Na przykład korzystając z wartości adekwatnych wielkości dotyczących struktur topologicznych (rys. 3, rys. 4) i postępując analogicznie jak w przypadku równania (61), otrzymujemy:

– dla struktury (rys. 3):

L= 7079 +678+848=8605, P= 0+6630+1766+209=8605,

- dla struktury (rys. 4):

L=1782+677+1486=3945,

P=303+1183+2055+404=3945.

Wypadkowe ciągi naturalne e_{nw} określone drugimi wzorami (29), (37), (46), (49), (52), (55) są wielkościami dodatnimi, wobec czego znak plus występujący przed ostatnim składnikiem lewej strony równania (62) oznacza, że wymieniony ciąg wypadkowy pracuje zgodnie z wentylatorem głównym.

11.3. Dla temperatur powietrza do 60°C można stosować wzór [9]:

$$p_{p} = 610,5 \exp\left[\frac{17,27 \cdot t_{m}}{237,3+t_{m}}\right] - 0,000644 p \left(t-t_{m}\right) \quad (63)$$

dla temperatur powietrza do 50°C – wzór Sprunga [8]:

$$p_p^s = 610,5 \exp\left[\frac{17,27t_m}{237,3+t_m}\right] - \frac{p}{10100} \cdot 6,69(t-t_m) \quad (64)$$

Przybliżone ciśnienia cząstkowe obliczone wzorami (63), (64) podane są odpowiednio w ostatniej kolumnie tabel 1, 4, 7, 10 i tabel 13, 16, 19, a dokładne obliczone wzorem (5) – w przedostatniej kolumnie tych tabel.

11.4. Pięciokąt krzywoliniowy (rys. 9) uzyskaliśmy przy założeniu, że powietrze kopalniane jest mieszaniną pary wodnej, kropelek ciekłej wody i czystego powietrza suchego, którego skład chemiczny nie zależy od miejsca (czynnik termodynamiczny).

11.5. Z analizy struktur topologicznych wynika, że:

- wypadkowy ciąg naturalny, e_{nz} , generowany w oczku zewnętrznym z, struktur od rys. 2 do rys. 8 pracuje zgodnie z wentylatorem głównym,
- wypadkowy ciąg naturalny, e_{nw} , generowany w oczku wewnętrznym w pierwszej struktury (rys. 2) pracuje niezgodnie z wentylatorem głównym, a w pozostałych strukturach (od rys. 3 do rys. 8) zgodnie z tym wentylatorem.

12. WNIOSKI

W przypadku wyznaczania ciśnienia cząstkowego pary wodnej nienasyconej za pomocą wzorów (63), (64), pomocne jest korzystanie z ostatnich dwu kolumn tabel 1, 4, 7,10, 13.

Pięciokąt krzywoliniowy (rys. 9) dotyczy przypadku, w którym powietrze kopalniane jest traktowane jako mieszanina czystego powietrza suchego (czynnik termodynamiczny), pary wodnej i kropelek ciekłej wody. Jeśli powietrze kopalniane jest traktowane jako mieszanina pary wodnej, kropelek ciekłej wody i suchego powietrza kopalnianego, którego skład chemiczny zależy od miejsca, to należy stosować temperaturę wirtualną [6].

Literatura

- Budryk W.: Odwracanie się prądów powietrznych w czasie pożarów poziemnych i sposoby zapobiegania. Archiwum Górnictwa, t. II, z. 2, 1954, s. 125-170.
- Budryk W.: Znaczenie analizy wypadków pożarowych dla zmniejszenia katastrof górniczych. Przegląd Górniczy, nr 9, 1957, s. 401-406.
- Bystroń H.: Graficzne kryteria kierunków prądów w kopalnianych sieciach przewietrzania. MG. Prace GIG. Seria A. Kom., nr 196. Wyd. "Śląsk". Katowice 1957, s. 47.
- Bystroń H.: Stan pożaru, zapalenie i wybuch gazów podczas aktywnego i pasywnego gaszenia. Archiwum Górnictwa, t. 24, z. 1, 1997, s. 3-24.
- Bystroń H: An approach to mine ventilation based on the aerodynamic potential of ventilating air treated as a mixture of dry air, water vapour and liquid water droplets. Proceedings of the International Mine Ventilation Congress. Chapter 1. June 17-22, 2001. Cracow. Katowice. EMAG. Poland, p. 1-8.
- Bystroń H.: Temperatura wirtualna suchego powietrza wentylacyjnego i jej zastosowanie w obliczeniach wentylacji kopalń. Przegląd Górniczy, nr 5, 2002, s. 8-17.
- Bystroń H.: Podejście termodynamiczne do odwracania się prądów powietrznych bocznego i głównego w kopalni o schodzącym przewietrzaniu projektowanych nadpoziomowych robót wydobywczych w czasie pożarów węgla w schodzącym prądzie niezależnym. Mechanizacja i Automatyzacja Górnictwa, nr 10, 2008, 5-23.
- Häussler W.: Zastosowanie wykresu i x w inżynierii sanitarnej. Arkady. Warszawa 1970, s. 206.
- McPherson M.J.: 14. Psychrometry: the study of moisture in air. Subsurface Ventilation and Environmental Engineering. London, New York 1993, p. 491-521.