Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Alpine wetland is a source for methane (CH[4]), an important greenhouse gas, but little is known about how this habitat influences the emission. To understand this wetland habitats were selected at the altitude of 3430 m a.s.l. (in National Wetland Nature Reserve of Zoige, Quingle - Tibetan Plateau) and the methane flux was measured with static chambers in three different sites, including hollows with Carex muliensis Hand - Mazz. and Eleocharis valleculosa Ohwi f. setosa (Ohwi) Kitagawa., grass hummocks composed of Kobresia tibetica Maxim, Cremanthodium pleurocaule R. D. Good, Potentilla bifurca L. and Pedicularis sp. We have found that in alpine wetland these habitats significantly affect CH[4] emissions in the onset (April, 2006) and peak (August, 2005) stages of growing season. Hollows covered with Carex muliensis and Eleocharis valleculosa had higher values of emission than grass hummocks built by several grass species. Slight difference of CH[4] emission was found between two kinds of hollows with Carex muliensis and Eleocharis valleculosa. These results were consistent with the change of water table, which was found best correlated with CH4 emissions (r[^2] = 0.43, P <0.01) in the peak stage of growing season. Directly measured shoot biomass and plant heights were best related to CH[4] emissions (r[^2] = 0.59, P <0.01). However, in the onset stage of growing season, variation of CH[4] emission may not be simply ascribed to changes in water table and vegetation structure.
Czasopismo
Rocznik
Tom
Strony
377--381
Opis fizyczny
Bibliogr. 20 poz.,Rys., tab.,
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
- College of Resources and Environment Science, Chongqing University, Chongqing 400030, China ; Key Laboratory for the Exploitation of South-West Resources and Environmental Disaster Control Engineering, Ministry of Education, Chongqing University, 400044, wuning@cib.ac.cn
Bibliografia
- 1. Bubier J., Costello A., Moore T.R., Roulet N.T., Savage K. 1993 – Microtopography and Methane Flux in Boreal Peatlands, Northern Ontario – Can. J. Bot. 71: 1056–1063.
- 2. Bubier J.L., Moore T.R., Juggin S. 1995 – Predicting methane emission from bryophyte distribution in northern Canadian peatlands – Ecology, 76: 677–693.
- 3. Buening J., Hurley K., Johns M. 2007 – Urban wetland restoration – Geotimes, 52: 36–39.
- 4. Chanton J.P., Whiting G.J., Happell J.D., Gerard G. 1993 – Contrasting Rates and Diurnal Patterns of Methane Emission from Emergent Aquatic Macrophytes – Aquat. Bot. 46: 111–128.
- 5. Chen, H., Yao S., Wu N., Wang Y., Luo P., Tian J., Gao Y., Sun G. 2008 – Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications – J. Geophys. Res. 113, D12303,doi:10.1029/2006JD008072.
- 6. Chimner R.A., Cooper D.J. 2003 – Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains – Can. J. Bot. 81: 477–491.
- 7. Cui B.S., Zhai H.J. 2006 – Characteristics of wetland functional degradation and its ecological water requirement for restoration in Yilong Lake of Yunnan Plateau – Chinese Sci. Bull. 51: 127–135.
- 8. Ding A., Willis C.R., Sass R.L., Fisher F.M. 1999 – Methane emissions from rice fields: Effect of plant height among several rice cultivars – Global Biogeochem. Cycles, 13: 1045–1052.
- 9. Ding W., Cai Z., Tsurut, H., Li X. 2003 – Key factors affecting spatial variation of methane emissions from freshwater marshes – Chemosphere, 51: 167–173.
- 10. Grünfeld S., Brix H. 1999 – Methanogenesis and methane emissions: effects of water table, substrate type and presence of Phragmites australis – Aquatic Botany, 64: 63–75.
- 11. Hirota M., Tang Y.H., Hu Q.W., Hirata S., Kato M., Mo W. H., Cao G. M., Mariko S. 2004 – Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland – Soil Biol Biochem. 36: 737–748.
- 12. IPCC ( Intergovernmental Panel on Climate Change) 2007 – Climate Change 2007: The Physical Science Basis – Cambridge University Press, New York.
- 13. Kettunen A. 2003 – Connecting methane fluxes to vegetation cover and water table fluctuations at microsite level: A modeling study – Global Biogeochem. Cycles, 17, doi: 10.1029/2002GB001958.
- 14. Khalil M.A.K. 2000 – Atmospheric methane: an introduction (In: Atmopheric Methane: Its Role in the Global Environment, Ed. M. Khalil) – Springer, New York, pp. 1–8.
- 15. Middelburg J.J., Nieuwenhuize J., Iverson N., Høgh N., Dewilde H., Helder W., Seifert R., Christof O. 2002 – Methane distribution in European tidal estuaries – Biogeochemistry, 59: 95–119.
- 16. Mitsch W.J. 2005 – Wetland creation, restoration, and conservation: a wetland invitational at the Olentangy River Wetland Research Park – Ecol. Eng. 24: 243–251.
- 17. Oquist M.G., Svensson B.H. 2002 – Vascular plants as regulators of methane emissions from a subarctic mire ecosystem – J. Geophys. Res., 107(D21), 4580, doi:10.1029/2001JD001030.
- 18. Van den Pol-Van Dasselaar A., Van Beusichem M.L., Oenema O. 1999 – Determinants of spatial variability of methane emissions from wet grasslands on peat soil – Biogeochemistry, 44: 221–237.
- 19. Wang Z.P., Han X.G. 2005 – Diurnal variation in methane emissions in relation to plants and environmental variables in the Inner Mongolia marshes – Atmos. Environ. 39: 6295–6305.
- 20. Wickland K.P., Striegl R.G., Mast M.A., Clow D.W. 2001 – Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998 – Global Biogeochem. Cycles, 15: 321–325.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2578-9703