PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degradation of chitin in natural environment : role of Actinomycetes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The actinomycetes in water samples and bottom sediments of lowland, eutrophic lake as well as in soil (farmland, sandy) of the lake basin were studied. Chitin-degrading actinomycetes were isolated (with a plate technique) from each habitat; subsequently, their chitinolytic activity (with the fluorometric method) was determined in relation to temperature (10-50[degree]C) and the physical type of chitinous substance (colloidal chitin, chitin powder, and shrimp shells). This study demonstrated that actinomycetes were the most abundant in soil samples (average of 18x10[^3] CFU g[^-1] in farmland soil, 9x10[^3] CFU g[^-1] in sandy soil), and the least abundant in water samples (average of 2.7x10[^1] CFU mL[^-1] in lake water at neutral pH, 0.6x10[^1] CFU mL[^-1] in lake water with alkaline pH). The highest percentage of chitinolytic actinomycetes was observed in soil (average of 80% in sandy soil and 85% in farmland soil). Chitinolytic actinomycetes also made up a large fraction of total actinomycetes in water samples (average of 73%). In silt and sandy sediments, percentages of chitinolytic actinomycetes equaled 23 and 15%, respectively. Actinomycetes collected in soil were characterized by the highest activity (average of 14 nmol MUF mg[^-1] of protein h[^-1] in farmland soil, 8.5 nmol MUF mg[^-1] protein h[^-1] in sandy soil). The lowest activity was observed among benthic actinomycetes (average of 5.4 nmol MUF mg[^-1] of protein h[^-1] in silt, 0.65 nmol MUF mg[^-1] protein h[^-1] in sandy sediments). The impact of temperature and the type of chitinous substrate on the activity of chitinases produced by actinomycetes demonstrated that their activity peaked at 40[degree]C and in the presence of colloidal chitin. Observed differences in actinomycetales number and activity in the lake and the soil may be explained by higher accumulation of chitin substances in the soil. This polymer allows microorganisms to continually synthesize chitinolytic enzymes and take active part in that compound decomposition.
Słowa kluczowe
Rocznik
Strony
229--238
Opis fizyczny
Bibliogr. 45 poz.,Tab., wykr,
Twórcy
autor
autor
  • Departament of Environmental Microbiology and Biotechnology, Institute of Ecology and Environment Protection, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland, swiontek@biol.uni.torun.pl
Bibliografia
  • 1. Barabasz W., Smyk B. 1997 – Mikroflora gleb zmęczonych [Microflora heavily manged soil] – Zeszyty Problemowe Postępów Nauk Rolniczych, 452: 37-50 (in Polish).
  • 2. Bednarek R., Dziadowiec H., Pokojska U., Prusinkiewicz Z. 2005 – Badania ekologiczno-gleboznawcze [Ecology and Soil Science Research] – PWN Warszawa, pp. 344 (in Polish).
  • 3. Bendt A., Hüller H., Kammel U., Helmke E., Schweder T. 2001 – Cloning, expression and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain Fi:7 – Extremophiles, 5: 119-126.
  • 4. Bhushan B., Hoondal G.S. 1998 – Isolation, purification and properties of a thermostable chitinase from an alkalophilic Baciullus sp. BG-11 – Biotechnol. Lett. 20: 157-159.
  • 5. Bradford M.M. 1976 – Rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bunding – Anal. Biochem. 72: 248-254.
  • 6. Brown S.E., Goulder R. 1996 – Extracellular-enzyme activity in trout farm effluents and recipient river – Aquacult. Res. 27; 895-901.
  • 7. Burns A., Phillipp H., Cyponka H., Brinkhoff T. 2003 – Aeromicrobium marinum sp. nov., an abundant pelagic bacterium isolated from the German Wadden Sea – Int. J. Syst. Evol. Microbiol. 53: 1917-1923.
  • 8. Cabib E. 1988 – Assay for chitinase using tritiated chitin (In: Methods in Enzymol, Eds. W.A. Wood, S.T. Kellogg), 161: 424-426.
  • 9. El-Fiky Z.A., Mansour S.R., El-Zawhary Y., Ismail S. 2003 – DNA – fingerprints and phylogenetic studies of some chitinolytic actionomycete isolates – Biotechnology, 2: 131-140.
  • 10. Gomes R.C., Semêdo L.T.A.S., Soares R.M.A., Aliviano C.S., Linhares L.F., Coelho R.R.R. 2000 – Chitinolytic actinomycetes from a Brazilian tropical soil active against phytopathogenic fungi – World J. Microbiol. & Biotech. 16: 109-110.
  • 11. Grzybowska M. 2003 – Czy skorupiaki i owady pomogą nam schudnąć? [Will crustaceans and insects can help us lost weigh?] – Wszechświat, 1-3 (in Polish).
  • 12. Haran S., Schickler H., Oppenheim A., Chet I. 1995 – New Components of the chitinolytic system of Trichoderma harzianum – Mycol. Res. 99: 441-446.
  • 13. Hatano K., Frederic D.J., Moore J.A. 1994 – Microbial ecology of constructed wetlands used for treating pulp mill wastewater – Water Sci Technol. 29: 233-239.
  • 14. Hoppe H.G. 1993 – Use fluorogenic model substrates for extracellular enzyme activity (EEA) measurements of bacteria (In: Handbook of methods in aquatic microbial ecology, Eds. P.F. Kemp, B.F. Sherr, E.B. Sherr, J.J. Cole) – Lewis, London, pp. 509-512.
  • 15. Hsu S.C., Lockwood J.L. 1975 – Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil – Appl. Microbiol. 29: 422-436.
  • 16. Huang J-H, Chen C-J, Su Y-C. 1996 – Production of chitinolytic enzymes from a novel species of Aeromonas – J. Ind. Microbiol. 17: 89-95.
  • 17. Jenkins D., Richard M.G., Daigger G.T. 1993 – Manual on the causes and control of activated sludge bulking and foaming, second ed – CRG Press, Boca Raton.
  • 18. Jensen P.R., Dwight R., Fenical W. 1991 – Distribution of actinomycetes in near – shore tropic marine sediments – Appl. Environ. Microbiol. 57: 1102-1108.
  • 19. Joo G-J. 2005 – Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii – Biotechnol. Lett. 27: 1483-1486.
  • 20. Klausen C., Nicolaisen M.H., Strobel B.W., Warnecke F., Nielsen J.L., Joregensen N.O.G. 2004 – Abundance of actinobacteria and production of geosmin and 2-methylisoborneal in Danish Streams and fish ponds – FEMS Microbiol. Ecol. 52: 265-278.
  • 21. Lamy F., Bianchi M., van Wambeke F., Sempéré R., Talbot V. 1999 – Use of the assimilation techniques to analyze the significance of ectoproteolytic activity measurements performed with the model substrate MCA-Leu – Marine Ecol. Prog. Series, 177: 27-35.
  • 22. Lingappa Y., Lockwood J.L. 1962 – Chitin media for selective isolation and culture of Actinomycetes – Phytopathology, 52: 317-323.
  • 23. Mahadevan B., Crawford D.L. 1997 – Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC 108 – Enzym. Microb. tech. 20: 489-493.
  • 24. Marszewska-Ziemięcka J., Maliszewska W., Myśkow W., Strzelczyk E. 1974 – Mikrobiologia gleby i nawozów organicznych [Microbiology soil and manure organic] – PWRiL, Warszawa, pp. 122 (in Polish).
  • 25. Martinez J., Smith D.C., Steward G.F., Azam F. 1996 – Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea – Aquat. Microb. Ecol. 10: 223-230.
  • 26. McCreath K.J., Gooday G.W. 1992 – A rapid and sencitive microassay for determination of chitinolytic activity – J. Microbiol. Meth. 14: 229-237.
  • 27. Mudryk Z. 1991 – The role of heterotrophic bacteria in the decomposition processes of some macromolecular compounds in the estuarine Gardno lake – Pol. Arch. Hydrobiol. 38: 153-162.
  • 28. Nakaew N. 2000 – Chitinase production by mold in solid state fermentation of prawn and shrimp shells – Proceedings of the IFT Annual Meeting 78D: 6.
  • 29. Nampoothiri K.M., Baiju T.V., Sandhya C., Sabu A., Szakacs G., Pandey A. 2004 – Process optimization for antifungal chitinase production by Trichoderma harzianum – process Biochemistry, 39: 1583-1590.
  • 30. Nielsen M.N., Sørensen J. 1999 – Chitynolitic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere – FEMS Microbiol. Ecol. 30: 217-227.
  • 31. Patil R.S., Ghormade V., Deshpande M.V. 2000 – Chtinolytic enzymes: an exploration – Enzym. Microbiol. Tech. 26: 473-483.
  • 32. Paul E.A., Clark F.E. 2000 – Mikrobiologia i biochemia gleby [Microbiology and biochemistry of soil] – Wydawnictwo UMCS, Lublin, pp. 108 (in Polish).
  • 33. Pinto A.D.S., Barreto C.C., Schrank A., Ulhoa C.J., Vainstein M.H. 1997 – Purification and characterization of an extracellular chitinase from the entomopathogen Metarhizium anisopliae – Can. J. Microbiol. 43: 322-327.
  • 34. Podgórska B. 2002 – Udział bakterii w procesach transformacji materii organicznej w ekotonie plaż piaszczystych Bałtyku [The role of bacteria in transformation of organic matter of sandy beach ecotones of the Baltic sea.] – Ph.D. thesis, Pomeranian University, Słupsk, 119 pp, (in Polish).
  • 35. Rattanakit N., Plikomol A., Yano S., Wakayama M., Tachiki T. 2002 – Utilization of shrimp shellfish waste as a substrate for solid-state cultivation of Aspergillus sp. S1-13: evaluation of a culture based on chitinase formation which is necessary for chitin assimilation – J. Biosci. Bioeng. 6: 550-556.
  • 36. Souza-Neto J.A., Gusmão D.S., Lemos F.J.A. 2003 – Chitinolytic activities in the gut of Aedes aegypti (Diptera: Culicidae) larvae and their role in digestion of chitin-rich structures – Comp. Biochem. Phys. Part A, 136: 717-724.
  • 37. Swiontek Brzezinska M. 2004 – Występowanie i aktywność chitynolityczna bakterii jezior o różnej trofii [Occurrence and activity chitynolytic of bacteria in lakes of different trophy] – Ph.D. thesis, Nicolaus Copernicus University, Toruń, pp. 62-71 (in Polish).
  • 38. Swiontek Brzezinska M., Donderski W. 2006 – Chitinolytic bacteria in two lakes of different trophic status – Pol. J. Ecol. 54: 295-301.
  • 39. Swiontek Brzezinska M., Lalke-Porczyk E., Donderski W. 2007 – Chitinolytic activity of bacteria and fungi isolated from shrimp exoskeletons – Oceanol. Hydrobiol. Stud. 36: 101-111.
  • 40. Swiontek Brzezinska M., Lalke-Porczyk E., Donderski W. 2008a – the role of chitinolytic bacteria and fungi in biodegradation of crustacean remains in lacustrine habitats – Pol. J. Ecol. 56: 335-342.
  • 41. Swiontek Brzezinska M., Lalke-Porczyk E., Donderski W. 2008b – Shrimp waste as a respiration substrate for soil microflora of the chełmżyńskie lake wastershed – Pol. J. Nat. Sci. 23: 164-177.
  • 42. Terkina I.A., Drukker V.V., Parfenova V.V., Kostornova T.Y. 2002 – The biodiversity of actinomycetes in lake Baikal – Microbiology, 71: 46-349.
  • 43. Tominga Y., Tsujisaka Y. 1976 – Purifications and some properties of two chitinases from Streptomyces orientalis which lyse Rhizopus cell wall – Agr. Biol. Chem. 40: 2325-2333.
  • 44. Wiwat C., Siwayaprahm P., Bhumiratana A. 1999 – Purification and characterization of chitinase from Bacillus circulans No. 4.1. – Current microbiology, 39: 34-140.
  • 45. Yang Y., Hamaguchi K. 1980 – Hydrolysis of 4-methylumbelliferyl-N-acetyl-chitotrioside catalyzed by hen and turkey lysozymes – J. Bioch. 87: 1003-1014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2578-9687
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.