PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cogradient pattern of growth in montane and lowland larvae of Rana remporaria (L.) at two levels of temperature

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Direct environmental impact and microevolutionary pressure may both shape the phenotype by acting synergistically (cogradient) or antagonistically (countergradient). An experimental approach is therefore needed to determine which environmental challenges are responsible for the observed inter-population variation in a phenotypic trait and if such variation is adaptive. Rana temporaria L. larvae were reared in a factorial experiment, with two temperature regimes (differential of 6[degrees]C) and larvae originating from two source populations in Poland: a montane pond in the Babia Gora National Park (elevation 1025 m) and a lowland swamp near Warszawa (elevation 100 m). Populations did not differ in early larval growth rates or in the length of the larval period. In both populations, the early rates of development were higher and the larval period was expectably and substantially shorter at higher temperature. The montane larvae were heavier at metamorphosis than the lowland larvae, but significantly so only at the low temperature treatment. The observed patterns of responses partially conform to the cogradient model of phenotypic variation, in which both environmental and selective effects are mutually enhancing the differentiation of populations.
Rocznik
Strony
353--361
Opis fizyczny
Bibliogr. 67 poz.,Rys., tab.,
Twórcy
  • Laboratory of Ecogenetics, Agricultural University, Łobzowska 24, 31-140 Krakow, Poland ; Nowy Sącz Business School - National Louis University, Zielona 27, 33-300 Nowy Sącz, Poland, jasienski@post.harvard.edu
Bibliografia
  • 1. Alvarez D., Nicieza A.G. 2002 – Effects of temperature and food quality on anuran larval growth and metamorphosis – Funct. Ecol. 16: 640–648.
  • 2. Angilletta M.J., Bennett A.F., Guderley H., Navas C.A., Seebacher F., Wilson R.S. 2006 – Coadaptation: a unifying principle in evolutionary thermal biology – Physiol. Biochem. Zool. 79: 282–294.
  • 3. Arendt J.D., Wilson D.S. 1999 – Countergradient selection for rapid growth in pumpkinseed sunfish: Disentangling ecological and evolutionary effects – Ecology, 80: 2793–2798.
  • 4. Atkinson D., Sibly R.M. 1997 – Why are organisms usually bigger in colder environments? Making sense of a life history puzzle – Trends Ecol. Evol. 12: 235–239.
  • 5. Babik W., Rafiński J. 2001 – Amphibian breeding site characteristics in the Western Carpathians, Poland – Herpetol. J. 11: 41–51.
  • 6. Belk M.C., Johnson J.B., Wilson K.W., Smith M.E., Houston D.D. 2005 – Variation in intrinsic individual growth rate among populations of leatherside chub (Snyderichthys copei Jordan & Gilbert): adaptation to temperature or length of growing season? – Ecol. Freshw. Fish, 14: 177–184.
  • 7. Bernardo J., Reagan-Wallin N.L. 2002 – Plethodontid salamanders do not conform to “general rules” for ectotherm life histories: insights from allocation models about why simple models do not make accurate predictions – Oikos, 97: 398–414.
  • 8. Berven K.A. 1982 – The genetic basis of altitudinal variation in the wood frog, Rana sylvatica. II. An experimental analysis of larval development – Oecologia, 52: 360–369.
  • 9. Berven K.A., Gill D.E. 1983 – Interpreting geographic variation in life history traits – Amer. Zool. 23: 85–97.
  • 10. Bonin A., Taberlet P., Miaud C., Pompanon F. 2006 – Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria) – Molec. Biol. Evol. 23: 773–783.
  • 11. Cano J.M., Laurila A., Palo J., Merilä J. 2004 – Population differentiation in G matrix structure due to natural selection in Rana temporaria – Evolution, 58: 2013–2020.
  • 12. Conover D.O., Present T.M.C. 1990 – Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes – Oecologia, 83: 316–324.
  • 13. Conover D.P., Schultz E.T. 1995 – Phenotypic similarity and the evolutionary significance of countergradient variation – Trends Ecol. Evol. 10: 248–252.
  • 14. Crispo E. 2008 – Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow – J. Evol. Biol. 21: 1460–1469.
  • 15. Cummins C.P. 1986 – Temporal and spatial variation in egg size and fecundity in Rana temporaria – J. Anim. Ecol. 55: 303–316.
  • 16. Ellegren H., Sheldon B.C. 2008 – Genetic basis of fitness differences in natural populations – Nature, 452: 169–175.
  • 17. Ficetola G.F., De Bernardi F. 2005 – Supplementation or in situ conservation? Evidence of local adaptation in the Italian agile frog Rana latastei and consequences for the management of populations – Anim. Conserv. 8: 33–40.
  • 18. Freidenburg L.K., Skelly D.K. 2004 – Microgeographical variation in thermal preference by an amphibian – Ecol. Lett. 7: 369–373.
  • 19. Ghalambor C.K., McKay J.K., Carroll S.P., Reznick D.N. 2007 – Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments – Funct. Ecol. 21: 394–407.
  • 20. Gosner K.L. 1960 – A simplified table for staging anuran embryos and larvae with notes on identification – Herpetologica, 16: 183–190.
  • 21. Grether G.F. 2005 – Environmental change, phenotypic plasticity, and genetic compensation – Am. Nat. 166: E115–E123.
  • 22. Holeksa J., Parusel J.B. 1989 – Snow cover in the forest zones of the Babia Gora massif (West Carpathians) – Acta Biol. Mont. 9: 341–352.
  • 23. Jasieński M. 1988 – Kinship ecology of competition: size hierarchies in kin and nonkin laboratory cohorts of tadpoles – Oecologia, 77: 407–413.
  • 24. Jasieński M. 2008 – The potential for recovery growth in stunted larvae of Rana sylvatica and its decline with developmental stages in R. temporaria – Amphibia-Reptilia, 29: 399–404.
  • 25. Jasieński M., Ayala F.J., Bazzaz F.A. 1997 – Phenotypic plasticity and similarity of DNA among genotypes of an annual plant – Heredity, 78: 176–181.
  • 26. Kaplan R.H., Phillips P.C. 2006 – Ecological and developmental context of natural selection: Maternal effects and thermally induced plasticity in the frog Bombina orientalis – Evolution, 60: 142–156.
  • 27. Kawecki T.J., Ebert D. 2004 – Conceptual issues in local adaptation – Ecol. Lett. 7: 1225–1241.
  • 28. Knopp T., Cano J. M., Crochet P.A., Merila J. 2007 – Contrasting levels of variation in neutral and quantitative genetic loci on island populations of moor frogs (Rana arvalis) – Conserv. Genet. 8: 45–56.
  • 29. Kozłowska M. 1971 – Differences in the reproductive biology of mountain and lowland common frogs, Rana temporaria L. – Acta Biol. Cracov., Ser. Zool. 14: 17–32.
  • 30. Kozłowski S. (Ed.) 1994 – Atlas of Resources, Values and Degradation of Geographical Environment of Poland – Polish Academy of Sciences, Warszawa.
  • 31. Laugen A.T., Laurila A., Merilä J. 2002 – Maternal and genetic contributions to geographical variation in Rana temporaria larval life-history traits – Biol. J. Linn. Soc. 76: 61–70.
  • 32. Laugen A.T., Laurila A., Merilä J. 2003a – Latitudinal and temperature-dependent variation in embryonic development and growth in Rana temporaria – Oecologia, 135: 548–554.
  • 33. Laugen A.T., Laurila A., Rasanen K., Merilä J. 2003b – Latitudinal countergradient variation in the common frog (Rana temporaria) development rates - evidence for local adaptation – J. Evol. Biol. 16: 996–1005.
  • 34. Laurila A., Seppä P. 1998 – Multiple paternity in the common frog (Rana temporaria): genetic evidence from tadpole kin groups – Biol. J. Linn. Soc. 63: 221–232.
  • 35. Laurila A., Kujasalo J. 1999 – Habitat duration, predation risk and phenotypic plasticity in common frog (Rana temporaria) tadpoles – J. Anim. Ecol. 68: 1123–1132.
  • 36. Laurila A., Karttunen S., Merilä J. 2002 – Adaptive phenotypic plasticity and genetics of larval life histories in two Rana temporaria populations – Evolution, 56: 617–627.
  • 37. Laurila A., Lindgren B., Laugen A. T. 2008 – Antipredator defenses along a latitudinal gradient in Rana temporaria – Ecology, 89: 1399–1413.
  • 38. Lindgren B., Laurila A. 2005 – Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria – J. Evol. Biol. 18: 820–828.
  • 39. Loman J. 2002a – Microevolution and maternal effects on tadpole Rana temporaria growth and development rate – J. Zool. 257: 93–99.
  • 40. Loman J. 2002b – Temperature, genetic and hydroperiod effects on metamorphosis of brown frogs Rana arvalis and R. temporaria in the field – J. Zool. 258: 115–129.
  • 41. Loman J. 2003 – Growth and development of larval Rana temporaria: Local variation and countergradient selection – J. Herpetol. 37: 595–602.
  • 42. Marquis O., Miaud C. 2008 – Variation in UV sensitivity among common frog Rana temporaria populations along an altitudinal gradient – Zoology, 111: 309–317.
  • 43. Marquis O., Miaud C., Lena J. P. 2008 – Developmental responses to UV-B radiation in common frog Rana temporaria embryos from along an altitudinal gradient – Popul. Ecol. 50: 123–130.
  • 44. Meier P.T. 2007 – Fine spatial scale phenotypic divergence in wood frogs (Lithobates sylvaticus) – Can. J. Zool. 85: 873–882.
  • 45. Merilä J., Laurila A., Laugen A.T., Rasanen K., Pahkala M. 2000 – Plasticity in age and size at metamorphosis in Rana temporaria - comparison of high and low latitude populations – Ecography, 23: 457–465.
  • 46. Merilä J., Laurila A., Laugen A.T., Rasanen K. 2004a – Heads or tails? - Variation in tadpole body proportions in response to temperature and food stress – Evol. Ecol. Res. 6: 727–738.
  • 47. Merilä J., Laurila A., Lindgren B. 2004b – Variation in the degree and costs of adaptive phenotypic plasticity among Rana temporaria populations – J. Evol. Biol. 17: 1132–1140.
  • 48. Miaud C., Guyetant R., Elmberg J. 1999 – Variations in life-history traits in the common frog Rana temporaria (Amphibia : Anura): a literature review and new data from the French Alps – J. Zool. 249: 61–73.
  • 49. Newman R.A. 1998 – Ecological constraints on amphibian metamorphosis: interactions of temperature and larval density with responses to changing food level – Oecologia, 115: 9–16.
  • 50. Nicieza A.G. 1999 – Context-dependent aggregation in common frog Rana temporaria tadpoles: influence of developmental stage, predation risk and social environment – Funct. Ecol. 13: 852–858.
  • 51. Niehaus A.C., Wilson R.S., Franklin C.E. 2006 – Short- and long-term consequences of thermal variation in the larval environment of anurans – J. Anim. Ecol. 75: 686–692.
  • 52. Niewiarowski P.H., Angilletta M.J. 2008 – Countergradient variation in embryonic growth and development: do embryonic and juvenile performances trade off? – Funct. Ecol. 22: 895–901.
  • 53. Palo J.U., O’Hara R.B., Laugen A.T., Laurila A., Primmer C.R., Merilä J. 2003 – Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data – Molec. Ecol. 12: 1963–1978.
  • 54. Pigliucci M., Kaplan J. 2006 – Making Sense of Evolution. The Conceptual Foundations of Evolutionary Biology – University of Chicago Press, Chicago, 300 pp.
  • 55. Piha H., Luoto M., Merilä J. 2007 – Amphibian occurrence is influenced by current and historic landscape characteristics – Ecol. Appl. 17: 2298–2309.
  • 56. Płytycz B., Dulak J., Pecio A. 1984 – Genetic control of length of the larval period in Rana temporaria – Folia Biol. 32: 155–166.
  • 57. Richter-Boix A., Llorente G.A., Montori A. 2006 – A comparative analysis of the adaptive developmental plasticity hypothesis in six Mediterranean anuran species along a pond permanency gradient – Evol. Ecol. Res. 8: 1139–1154.
  • 58. Sinsch U. 1984 – Thermal influence on the habitat preference and the diurnal activity in three European Rana species – Oecologia, 64: 125–131.
  • 59. Sommer S., Pearman P.B. 2003 – Quantitative genetic analysis of larval life history traits in two alpine populations of Rana temporaria – Genetica, 118: 1–10.
  • 60. Surova G.S. 1988 – Environmental and inherited components of rates of ontogeny in larvae of grass (Rana temporaria) and sharp-snouted (R. arvalis) frogs – Zool. Zh. 67: 396–405.
  • 61. Świerad J. 1988 – Vertical Ranges of Amphibians Occuring in the Polish Carpathian Mountains–IKN-ODN, Katowice (in Polish).
  • 62. Van Buskirk J., Arioli M. 2005 – Habitat specialization and adaptive phenotypic divergence of anuran populations – J. Evol. Biol. 18: 596–608.
  • 63. Walters R .J., Hassall M. 2006 – The temperature-size rule in ectotherms: May a general explanation exist after all? – Am. Nat. 167: 510–523.
  • 64. Warkentin K.M. 1992 – Effects of temperature and illumination on feeding rates of green frog tadpoles (Rana clamitans) – Copeia, 1992: 725–730.
  • 65. Yamahira K., Conover D.O. 2002 – Intra-vs. interspecific latitudinal variation in growth: Adaptation to temperature or seasonality? – Ecology, 83: 1252–1262.
  • 66. Yamahira K., Kawajiri M., Takeshi K., Irie T. 2007 – Inter- and intrapopulation variation in thermal reaction norms for growth rate: Evolution of latitudinal compensation in ectotherms with a genetic constraint – Evolution, 61: 1577–1589.
  • 67. Zabierowski K. (Ed.) 1983 – The Babia Góra National Park. People and Natural History – Studia Naturae, Seria B – vol. 29, PWN, Warszawa (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2578-9672
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.