PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Altitudinal variability of the soil water content in natural and managed beech (Fagus sylvatica L.) forests

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
European beech (Fagus sylvatica L.) ranks as one of the most adaptive species among European indigenous trees. Variable interactions between the trees and soil water depend on both phenotypic plasticity of the species and natural conditions. They are controlled through stomatal regulation and the ability of beech trees to accelerate quickly their growth if available resources increase. However, the effect of forest density at various altitudes on the soil water content in beech stands has been studied rather scarcely. Therefore, we monitored soil moisture by means of Time Domain Reflectometry in series of natural and managed stands located on sites representing the lower altitude (200-550 m a.s.l.), middle altitude (550-1050 m a.s.l.) and higher altitude (1050-1300 m a.s.l.) zones of the natural beech belt in the Western Carpathians, Slovakia. Forest stand density, expressed in terms of basal area, i.e. the sum of cross section areas of the tree stems at 1.30 m height, was unchanged in natural stands, but it was reduced by 60% in the shelterwood stands. In the clear-cuts, all trees were removed. Total soil water content (SWC) under forest stands was calculated in mm as the product of soil moisture and soil depth, the latter acquired by electrical resistivity tomography. SWC differences between natural and shelterwood stands of the lower altitude, middle altitude and higher altitude zones averaged 18 mm, 36 mm and -3 mm, respectively. According to the Friedman test on ranks, followed by post-hoc multiple comparison testing, the difference was only significant within the middle altitude zone. In it, soil water consumption by the natural stand was limited only by the hormonally controlled seasonal regulation. The comparatively low water loss in the shelterwood stand resulted from a small rainfall interception by forest canopy and a decreased soil water uptake due to reduced basal area, leaf area index and simple age-size forest structure. In the lower altitude zone, the precipitation deficit and limited extractability of soil water were responsible for the absence of larger SWC differences. As opposed to that, low potential evapotranspiration prevented any noticeable SWC differences within the higher altitude zone.
Rocznik
Strony
313--319
Opis fizyczny
Bibliogr. 34 poz.,Rys., tab.,
Twórcy
autor
autor
autor
  • Department of Natural Environment, Faculty of Forestry, Technical University in Zvolen, Masarykova 24, SK-96053, Zvolen, Slovakia, pichler@vsld.tuzvo.sk
Bibliografia
  • 1. Assmann E. 1961 – Waldertragskunde – BLV Verlagsgesellschaft, München, 490 pp.
  • 2. Aussenac G. 2000 – Interaction between forest stands and microclimate: ecophysiological aspects and consequences of silviculture – Ann. For. Sci. 57: 287–301.
  • 3. Aussenac G., Granier A. 1988 – Effects of thinning on water stress and growth in douglas fir – Can. J. For. Res. 1: 100–105.
  • 4. Badoux A., Witzig J., Germann, P.F., Kienholz H., Lüscher P., Weingartner R., Hegg, C. 2006 – Investigations on the runoff generation at the profile and plot scales, Swiss Emmental – Hydrol. Process. 20: 377–394.
  • 5. Black T.A., Kelliher F.M. 1989 – Processes controlling understorey evapotranspiration - Phil. Trans. Roy. Soc. London B, 324: 207–231.
  • 6. Bolte A., Czajkowski T., Kompa T. 2007 – The north-eastern distribution range of European beech - a review – Forestry, 80: 413–429.
  • 7. Breda N., Granier A., Aussenac G. 1995 - Effects of thinning on soil water balance and tree water relations, transpiration and growth in oak forest (Quercus petraea (Matt) Liebl.) - Tree Physiol. 15: 295–306.
  • 8. Bublinec E. 1994 – Concentration, accumulation and cycling of elements in beech and spruce ecosystems – Acta Dendrobiologica - Veda, Bratislava, 85 pp.
  • 9. Čermák J., Matyssek R., Kučera J. 1993 – A cause of a rapid decline of large beech trees on heavy-textured soils after substantial opening of the canopy – Lesnictví, 39: 175–183.
  • 10. Dittmar C., Zech W., Elling W. 2003 – Growth variations of Common beech (Fagus sylvatica L.) under different environmental conditions in Europe - a dendroecological study – For. Ecol. Manage. 173: 63–78
  • 11. Gömöryová E. 2004 – Small-scale variation of microbial activities in a forest soil under a beech (Fagus sylvatica L.) stand – Polish J. Ecol. 52: 311–321.
  • 12. Granier A., Aubinet M., Epron, D., Falge, E., Gudmundsson, J., Jensen, N. O., Köstner, B., Matteucci, G., Pilegaard, K., Schmidt, M., Tenhunen, J. 2003 – Deciduous forests: Carbon and water fluxes, balances and ecophysiological determinants (In: Fluxes of carbon, water and energy of European forests, Ed. R. Valentini), Ecological Studies 163 – Springer Verlag, Berlin, pp. 55–70.
  • 13. Gregor J. 1999 – Influence of beech stand density and relief on soil moisture – Vedecké štúdie 7/1999/A, Technická Univerzita vo Zvolene, 56 pp.
  • 14. Ježík M., Blaženec M., Střelcová K. 2007 - Intraseasonal stem circumference oscillations: Their connection to weather course - Folia Oecologica, 34: 105–115.
  • 15. Ježík M., Voško M. 2002 – Diameter increment of beech trees and its trends on permanent research plots with various stand densities - Ekológia (Bratislava), 21, Suppl. 2: 80–90.
  • 16. Kenderes K., Mihók B., Standovár T. 2008 – Thirty years of gap dynamics in a central european beech forest reserve – Forestry, 81: 111–123.
  • 17. Korpel, Š. 1995 – Die Urwälder der Westkarpaten - Fischer, Jena, 310 pp.
  • 18. Koshi P. T. 1959 – Soil-moisture trends under varying densities of oak over story – U. S. Forest Serv. South. Forest Expt. Sta., Occas. Paper 167, 12 pp.
  • 19. Kutsch W.L., Herbst M., Vanselow R., Hummelshøj P., Jensen N.O., Kappen L. 2001 – Stomatal acclimation influences water and carbon fluxes of a beech canopy in northern Germany – Basic Appl. Ecol. 2: 265–281.
  • 20. Máliš J. 2007 – The interpretation of a tomographic reflection of electrical resistivity in the Javorie massif – Acta Facultatis Forestalis, Zvolen, 49, Supp. 1: 73–83.
  • 21. Maycock P.E., Guzik J., Jankovič J., Shevera M., Carleton T.J. 2000 – Composition, structure and ecological aspects of Mesic Old Growth Carpathian Deciduous Forest of Slovakia, Southern of Poland and the western Ukraine – Fragm. Florist. Geobot. 45: 281–321.
  • 22. Nagel T.A., Diaci J. 2006 – Intermediate wind disturbance in an old-growth beech-fir forest in Southeastern Slovenia – Can. J. For. Res. 36: 629–638.
  • 23. Papritz, A., Diserens, E., Schneebeli, M. 1991 – Einfluß des Bodenwasserhaushalts auf die Transpiration von Waldbäumen - eine Literaturübersicht (In: Schlussbericht des Nationalen Forschungsprogrammes Nr. 14+: Luftverschmutzung und Waldschäden in der Schweiz, Ed. W. Pankow) – Verlag der Fachvereine, Zürich, pp. 33–96.
  • 24. Pichler, V., Gregor, J., Váľka, J., Capuliak, J., Homolák, M. 2006 – Forest stand (Fagus sylvatica L.) density reduction as a global climate change adaptive forestry tool - Lesnícky časopis, 52: 89–97.
  • 25. Plesník P. 1978 – Man’s influence on timberline in the West Carpathian Mountains, Czechoslovakia - Arctic Alpine Res. 10: 491–504.
  • 26. Roberts J. 1983 – Forest transpiration: a conservative hydrological process? – J. Hydrol. 66: 133–141.
  • 27. Roberts J. 2000 – The influence of physical and physiological characteristics of vegetation on their hydrological response – Hydrol. Proc. 14: 2885–2901.
  • 28. Schipka F., Heimann J., Leuschner Ch. 2005 – Regional variation in canopy transpiration of Central European beech forests - Oecologia, 143: 260–270.
  • 29. Sokal R.R., Rohlf F.J. 1995 – Biometry, third ed. – W.H. Freemen and Co., New York, XIX + 887 pp.
  • 30. Střelcová K., Minďáš J., Škvarenina J. 2006 – Influence of tree transpiration on mass water balance of mixed mountain forests of the West Carpatians – Biológia (Bratislava), Special Iss.: Biohydrology: Impact of biological factors on soil hydrology, 75–79.
  • 31. Střelcová K., Matejka F., Minďáš J. 2002 - Estimation of beech tree transpiration in relation to their social status in forest stand - J. For. Sci. 48: 130–140.
  • 32. Škvarenina J., Križová E., Tomlain J. 2004 – Impact of the climate change on the water balance of altitudinal vegetation stages in Slovakia – Ekológia (Bratislava), 23, Suppl. 2: 13–29.
  • 33. Vincke, C., Bréda, N., Granier, A., Devillez, F. 2005 – Evapotranspiration of a declining Quercus robur (L.) stand from 1999 to 2001. I. Trees and forest floor daily transpiration - Ann. For. Sci. 62: 503–512.
  • 34. Zweifel R., Steppe K., Sterck F.-J. 2007 - Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model - J. Exp. Bot. 58: 2113–2131.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2578-9629
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.