PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generalized non-newtonian heat exchange. Flow of ice slurry in pipes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Nieniutonowska wymiana ciepła. Przepływ zawiesiny lodowej w rurach
Języki publikacji
EN
Abstrakty
EN
The present paper aims to outline the phenomena accompanying flow process and heat transfer of a 10.6% ethanol solution ice slurry during its flow in tubes. The generalized definition of the Reynolds number according to Metzner-Reed makes it possible to use the Fanning and Blasius formulas to calculate the Fanning resistance coefficient for the ice slurry. The original topic discussed in the paper is the dependence of the Nusselt number, for laminar and turbulent flow, on the generalized Reynolds number according to Metzner-Reed.
PL
Celem prezentowanej pracy jest kompleksowe przedstawienie zjawisk towarzyszących procesom przepływu i wymiany ciepła 10,6% roztworu etanolu z zawiesiną lodową podczas przepływu przez rury. Przyjęcie uogólnionej definicji liczby Reynoldsa według Metznera.Reeda pozwala zastosować zależności Fanninga i zależności Blasiusa do wyznaczania współczynników oporów Fanninga dla zawiesiny lodowej będącej cieczą Binghama. Rozważono zależność liczby Nusselta w przepływach laminarnym i turbulentnym od uogólnionej liczby Reynoldsa według Metznera-Reeda.
Rocznik
Strony
453--473
Opis fizyczny
Bibliogr. 52 poz.,Tab., wykr.,
Twórcy
autor
  • Krakow University of Technology, Institute of Industrial Equipment and Power Engineering, al. Jana Pawła II 37, 31-864 Krakow, Poland
Bibliografia
  • [1] GULIPART J., Experimental study and calculation method of transport characteristics of ice slurries. First Workshop on Ice Slurries of the International Institute of Refrigeration, Yverdon-Les-Bains, Schwitzerland, 1999, 74–82.
  • [2] SASAKI M., KAWASHIMA T., TAKAHASHI H., Hydrotransport 1993, 12, 533.
  • [3] CHRISTENSEN K.G., KAUFFELD M., Heat transfer measurements with ice slurry, IIR/IIIF Int. Conf. Heat Transfer Issues in Natural Refrigerants, Maryland, USA, 1997, 127.
  • [4] EGOLF P.W., KITANOVSKI A., ATA-CAESAR D., STAMATIOU E., KAWAJI M., BEDECARRATS J.P., STRUB F., Int. J. Refrigeration, 2005, 28, 51.
  • [5] JENSEN E., CHRISTENSEN K., HANSEN T., SCHNEIDER P., KAUFFLED M., Pressure drop and heat transfer with ice slurry, Purdue University, IIF/IIR 2000, 521–529.
  • [6] NIEZGODA-ŻELASKO B., ZALEWSKI W., Int. J. Refrigeration, 2006, 2, 418.
  • [7] KITANOVSKI A., VUARNOZ A., ATA-CAESAR D., EGOLF P.W., HANSEN T.M., DOETSCH CH., The fluid dynamics of ice slurry. Int. J. Refrigeration, 2005, 28, 37.
  • [8] INABA H., Int. J. Therm. Sci., 2000, 39, 991.
  • [9] MEEWISSE J.W., FERREIRA C.A., Optimal properties of ice slurries in secondary cooling systems, Purdue University IIR-IIF 2000,513–520.
  • [10] SNOEK C., BELLAMY J., Heat transfer measurements of ice slurry in tube flow. Exp. Heat Transfer Fluid Mech. Thermo 1997,1993–1997.
  • [11] WINTERS J.P., KOOY R.J., Direct freeze of ice slurry district cooling system evaluation,. Proc. 82nd Annual Conference International District Heating and Cooling Assoc. 1991, 381–398. B. NIEZGODA-472 ŻELASKO, J. ŻELASKO
  • [12] AYEL V., LOTTIN O., PEERHOSSAINI H., Int. J. Refrigeration, 2003, 26, 95.
  • [13] SELLGREN A., Hydraulic behaviour of ice particles in water, Proc. 10th Int. Conf. Hydr. Transp. Sol. in Pipes, London, 1986, 213.
  • [14] KNODEL B.D., FRANCE D.M., Experimental Heat Transfer 1988, 1, 265.
  • [15] DARBY R., Hydrodynamics of slurries and suspensions. Encyclopaedia of fluid mechanics, slurry flow technology, 1986, 5, 49.
  • [16] DONG W.I., Experimental study on flow and pressure drop of ice slurry for various pipes, Fifth Workshop on Ice-Slurries of the International Institute of Refrigeration, Stockholm, Sweden, 2002.
  • [17] WASP E.J., Solid-liquid flow, slurry pipeline transportation, Series on Bulk Material Handlings, Vol. 1, 1977.
  • [18] NIEZGODA-ŻELASKO B., Trans. Inst. Fluid Flow Machinery, 2006, 118, 71.
  • [19] NIEZGODA-ŻELASKO B., Heat transfer and pressure drop of ice slurries flow in tube, Monograph 334, Krakow University of Technology, Krakow, 2006.
  • [20] KNODEL B.D., FRANCE D.M., CHOI U., WAMSGANSS M., Appl. Therm. Eng., 2000, 20, 671.
  • [21] SARI O., VUARNOZ D., MEILI F., EGOLF P.W., Visualization of ice slurries and ice slurry flows, Second Workshop on Ice-Slurries of the International Institute of Refrigeration, Paris, 2000, 68–80.
  • [22] NIEZGODA-ŻELASKO B., Int. J. Refrigeration, 2006, 29,437–450.
  • [23] BELLAS J., CHAER I., TASSOU S.A., Appl. Thermal Eng., 2002, 22,721.
  • [24] NØRGAARD E., SØRENSEN T.A., HANSEN T.M., KAUFFELD M., Int. J. Refrigeration, 2005, 28, 83.
  • [25] NØRGAARD E., SØRENSEN T.A., HANSEN T.M., KAUFFELD M., Performance of components of iceslurry systems: pumps, plate heat exchangers and fittings, Proceedings of the 3rd IIR Workshop on Ice Slurries, Lucerne, 16–18 May 2001,129–136.
  • [26] STAMATIOU E., KAWAJI M., LEE B., GOLDSTEIN V., Experimental investigation of ice-slurry flow and heat transfer in a plate-type heat exchanger, Proc. the 3rd IIR Workshop on Ice Slurries, Lucerne, 16–18 May (2001),61–68.
  • [27] STAMATIOU E., KAWAJI M.,INT. J. Heat Mass Transfer 2005, 48, 3527.
  • [28] STAMATIOU E., KAWAJI M.,Int. J. Heat Mass Transfer 2005, 48, 3544.
  • [29] PETUKHOV B.S., Heat transfer and friction and turbulent pipe flow with variable physical properties, Advances in Heat Transfer 6, Academic Press, New York, 1970, 503–564.
  • [30] GNIELINSKI V., Forced convection ducts [In:] Heat Exchanger Design Handbook, E.U. Schlünder (Ed.) Hempshire, DC (1983).
  • [31] KOZICKI W., CHOU C.H., TIU C., Chem. Eng. Sci., 1966, 21, 665.
  • [32] AYEL V., LOTTIN O., PEERHOSSAINI H., Int. J. Refrigeration, 2003, 26, 95.
  • [33] DORON P., GRANICA D., BARNEA D., Int. J. Multiphase Flow, 1987, 19, 535.
  • [34] NIEZGODA-ŻELASKO B., Physical properties of ice slurry during flow in pipes, Proc. XII Symp. Heat and mass Exchange, Krakow 2004, 581–590 (in Polish).
  • [35] ORZECHOWSKI Z., Diphase flows, PWN, Warsaw, 1990 (in Polish).
  • [36] RICHARDSON J.F., ZAKI W.N., Sedimentation and fluidization: Part 1, Trans Inst. Chem Eng., 1954, 32, 35.
  • [37] HANKS R.W., PRATT D.R., On the flow of Bingham plastic slurries in pipes and between parallel plates. Society of Petroleum Engineering Paper No. SPE 1682, 1967.
  • [38] SHAH S.N., SUTTON D.L., Soc. Pet. Eng. Prod. Eng., 1991, 12, 415.
  • [39] MAGLIONE R., Oil Gas J., 1995, 93, 94.
  • [40] MATRAS Z., Hydraulic transport of rheollogically complex non-Newtonian fluids in pipes, Thesis, Krakow University of Technology, Krakow, 2001.
  • [41] GÜCÜYENER .H., MEHMETOĞLU T., J. Petrol. Sci. Eng., 1996, 16, 45.
  • [42] RYAN N.W., JOHNSON M.M., AIChE J., 1959, 5, 433.
  • [43] MISHRA P., TRIPATHI G., Chem. Ing. Sci., 1971, 26, 915.
  • [44] DESOUKY S.E.M., AL-AWAD M.N.,J. Petrol. Sci. Eng., 1990, 19, 171.
  • [45] CHARUNKYAKORN P., SENGUPTA S., ROY S.K., Int. J. Heat Mass Transfer, 1991, 34, 819.
  • [46] NIEZGODA B., Solution of inverse problem for determining mean convective heat transfer coefficient by means of Gram–Schmidt and Nelder–Meade methods, Bull. Inst. Heat Techn. Warsaw University of Technology, 80, 1995.
  • [47] LAWSON C.L., HANSON R.J., Solving least squares problems, Engelwood Cliffs, New York, 1974.
  • [48] ORTEGA J.M., RHEINBOLDT W.C., Iterative solution of nonlinear equation in several variables, Academic Press, New York, 1970.
  • [49] SKELLAND A.H.P., Non-Newtonian flow and heat transfer, Wiley, New York, 1967.
  • [50] BEL O., LALLEMEND A., Int. J. Refrigeration, 1999, 22, 164.
  • [51] MELINDER A., GRANRYD E., Int. J. Refrigeration, 2005, 28, 13.
  • [52] MELINDER A., Thermophysical properties of liquid secondary refrigerants. Tables and diagrams for the refrigerants industry, IIF/IIR, Paris 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2494-9355
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.