Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Allium oleraceum L. and A. vineale L. are two related bulbous geophytes with an annual storage organ that coexist in a wide range of habitats but show both partly different geographic ranges and habitat preferences in Europe. To explore whether ecological and distributional differences between species can be related to expected variation in some key life-history traits between them, research was undertaken to compare the phenology, seasonal growth, and dry-mass allocation of vegetative and reproductive plants of the species at successional gradient comprising three sites with contrasting environmental conditions (steppe, scrub, forest), where populations of the study species coexist (the Czech Republic). The results showed, in general, partly different timing of phenophases between species and different responses of species to contrasting environmental conditions. A. vineale displayed an annual life cycle similar to that observed in many Mediterranean geophytes, i.e. regularly sprouting above ground before the arrival of winter, its growth was concentrated into early and mid-spring and started to wither after a temperature increase and several short-term drought events in early summer, though its flowering was delayed until late June. A. oleraceum showed high year-on-year variation in the onset of shoot elongation above-ground; its growth was concentrated into mid- and late spring and its flowering was delayed until July. The patterns of phenology observed between the study species thus partly reflect selection under different environmental conditions of their origin. The total duration of the green above-ground period of reproductive plants in both species continued about 1.5-2 months beyond that of the vegetative ones. Over main growth period, mean relative growth rates (RGR) of A. oleraceum and A. vineale ranged from 20 to 22 and from 6 to 28 mg g[^-1]dw day[^-1], respectively. A. vineale showed significantly higher RGR than A. oleraceum only in steppe conditions while at shaded sites the reverse pattern was found. The RGR of both vegetative and reproductive plants of A. oleraceum did not differ from one site to another. On the other hand, both vegetative and reproductive A. vineale plants showed lower RGR at shaded sites than at steppe one. Shading increased allocation into leaves in both species, caused complete abortion of developing scapes in A. vineale but only reduced reproductive allocation in A. oleraceum. A. oleraceum was able to maintain fitnessrelated traits more stably across the environments studied than A. vineale that fit well into the pattern of habitat differentiation observed between them in Central Europe. Data concerning growth of and allocation into new bulb in both species also support the hypothesis that allocating reserves for the coming year is the first priority in geophytes with an annual storage organ.
Czasopismo
Rocznik
Tom
Strony
15--32
Opis fizyczny
Bibliogr. 72 poz.,Tab., wykr., wz.,
Twórcy
autor
- Department of Botany, Faculty of Science, Palacky University, Slechtitelu 11, CZ-771 46 Olomouc, Czech Republic, martin.duchoslav@upol.cz
Bibliografia
- 1. Antlfinger A.E., Wendel L.F. 1997 – Reproductive effort and floral photosynthesis in Spiranthes cernua (Orchideaceae) – Am. J. Bot. 84: 769–780.
- 2. Åström H., Hæggström C.A. 2004 – Generative reproduction in Allium oleraceum (Alliaceae) – Ann. Bot. Fennici, 41: 1–14.
- 3. Barkham J.P. 1980 – Population dynamics of the wild daffodil (Narcissus pseudonarcissus). II. Changes in number of shoots and flowers, and the effect of bulb depth on growth and reproduction – J. Ecol. 68: 607–664.
- 4. Barkham J.P. 1992. Population dynamics of the wild daffodil (Narcissus pseudonarcissus). IV. Clumps and gaps – J. Ecol. 80: 797–808.
- 5. Bazzaz F.A., Grace J. 1997 – Plant resource allocation – Academic Press, San Diego, 303 pp.
- 6. Björkman O. 1981 – Responses to different quantum flux intensities (In: Encyclopedia of plant physiology, vol. 12A, Eds. O.L. Lange, P.S. Nobel, C.B. Osmond, H. Ziegler) – Springer-Verlag, NewYork, pp. 57–107.
- 7. Bremer P. 1999 – Veldwaarnemingen van Allium oleraceum L. (Moeslook) in het Beneden-Ijsselgebied – Gorteria, 25: 1–10.
- 8. Cheryomushkina V. A. 2004 – Biology of Allium species in Euroasia – Nauka, Novosibirsk. 280 pp.
- 9. Chytrý M. 1995 – Are species with similar ranges confined to similar habitats in a landscape? – Preslia, 67: 25–40.
- 10. Dafni A., Cohen D., Noy-Meir I. 1981 – Life-cycle variation in geophytes – Ann. Missouri Bot. Gard. 68: 652–660.
- 11. Debussche M., Garnier E., Thompson J.D. 2004 – Exploring the causes of variation in phenology and morphology in Mediterranean geophytes: a genus-wide study of Cyclamen – Bot. J. Linn. Soc. 145: 469–484.
- 12. De Hertogh A.A., Le Nard M. 1993 – Bulb growth and development and flowering (In: The physiology of flower bulbs, Eds. A.A. De Hertogh, M.Le Nard) – Elsevier, Amsterdam, pp. 29–52.
- 13. Duchoslav M. 2000 – Comparative ecology of Allium oleraceum and Allium vineale – Dissertation, Palacky University, Olomouc, Czech Republic, 145 pp.
- 14. Duchoslav M. 2001a – Allium oleraceum and A. vineale in the Czech Republic: distribution and habitat differentiation – Preslia, 73: 173–184.
- 15. Duchoslav M. 2001b – Small-scale spatial pattern of two common European geophytes Allium oleraceum and Allium vineale in contrasting habitats – Biologia, 56: 57–62.
- 16. Duchoslav M. 2005 – Ramet demography of Allium oleraceum (Alliaceae), a common European geophyte – Book of Abstracts, International Botanical Congress 2005, Vienna, p. 500.
- 17. Eggert A. 1992 – Dry matter economy and reproduction of a temperate forest spring geophyte, Allium ursinum – Ecography, 15: 45–55.
- 18. Ehlers B.K., Olesen J.M. 2004 – Flower production in relation to individual plant age and leaf production among different patches of Corydalis intermedia – Plant Ecol. 174: 71–78.
- 19. Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulissen D. 1991 – Zeigerwerte von Pflanzen in Mitteleuropa – Scripta Geobot. 18: 1–248.
- 20. Goryshina T.K. 1972 – Recherches écophysiologiques sur les plantes éphéméroides printanieres dans les chenaies de la zone foretsteppe de la Russie centrale – Oecol. Plant. 7: 241–258.
- 21. Grime J.P. 1965 – Shade tolerance in flowering plants – Nature, 208: 161–163.
- 22. Grime J.P. 1979 – Plant strategies and vegetation processes – John Willey and Sons, Chichester, 222 pp.
- 23. Hakansson S. 1963 – Allium vineale L. as a weed – Plant Husbandry, 19: 1–208.
- 24. Hartsema A.M. 1961 – Influence of temperatures on flower formation and flowering of bulbous and tuberous plants (In: Handbuch der Pflanzenphysiologie 16, Ed. E. Ruhland) – Springer-Verlag, Berlin, pp. 123–167.
- 25. Halevy A.H. 1990 – Recent advances in control of flowering and growth habit of geophytes – Acta Hort. 266: 35–42.
- 26. Hanelt P., Schultze-Motel J., Fritsch R., Kruse J., Maass H.I., Ohle H., Pistrick K. 1992 – Infragenetic grouping of Allium – the Gatersleben approach (In: The genus Allium – taxonomic problems and genetic resources, Eds. P. Hanelt P, K. Hammer, H. Knüpffer) – IGCPR, Gatersleben, pp. 107–123.
- 27. Hæggström C.A., Åström H. 2005 – Allium oleraceum (Alliaceae) in Finland: distribution, habitats and accompanying vascular plant species – Memoranda Soc. Fauna Flora Fennica, 81: 1–18.
- 28. Hintze J. 2004 – NCSS 2001. Number cruncher statistical systems – Kaysville.
- 29. Hoffmann W.A., Poorter H. 2002 – Avoiding bias in calculations of relative growth rate – Ann. Bot. 80: 37–42.
- 30. Iwasa Y., Roughgarden J. 1984 – Shoot/root balance in plants: optimal growth of a system with many vegetative organs – Theor. Popul. Biol. 25: 78–105.
- 31. Iwasa Y., Cohen D. 1989 – Optimal growth schedule of a perennial plant – Am. Nat. 133: 480–505.
- 32. Iwasa Y., Kubo T. 1997 – Optimal size of storage for recovery after unpredictable disturbances – Evol. Ecol. 11: 41–65.
- 33. Jones H.A., Mann L.K. 1963 – Onion and their allies – Leonard Hill Books, London, 286 pp.
- 34. Kamenetsky R. 1994 – Life cycle, flower initiation, and propagation of the desert geophyte Allium rothii – Int. J. Plant. Sci. 155: 597–605.
- 35. Kawano S. 1985 – Life history characteristics of temperate woodland plants in Japan (In: The population structure of vegetation, Ed. J. White J) – Dr. W. Junk, Dordrecht, pp. 515–549.
- 36. Kawano S., Nagai Y. 1975 – The productive and reproductive biology of flowering plants I. Life history strategies of three Allium species in Japan – Bot. Mag. 88: 281–318.
- 37. Kawano S., Hiratsuka A., Hayashi K. 1982 – Life history characteristics and survivorhip of Erythronium japonicum – Oikos, 38: 129–149.
- 38. Kull T. 1998 – Fruit-set and recruitment in populations of Cypripedium calceolus L. in Estonia – Bot. J. Linn. Soc. 126: 27–38.
- 39. Lapointe L. 1998 – Fruit development in Trillium. Dependence on stem carbohydrate reserves – Plant Physiol. 117: 183–188.
- 40. Lapointe L. 2001 – How phenology influences physiology in deciduous forest spring ephemerals – Physiol. Plant. 113: 151–157.
- 41. Méndez M. 1999 – Effects of sexual reproduction on growth and vegetative propagation in the perennial geophyte Arum italicum (Araceae) – Plant Biol. 1: 115–120.
- 42. Meus el H., Jäger E. 1992 – Vergleichende Chorologie der zentraleuropäischen Flora. Band III – Gustav Fischer, Jena, 333 + 688 pp.
- 43. Meusel H., Jäger E., Weinert E. 1965. Vergleichende Chorologie der zentraleuropäischen Flora – Gustav Fischer, Jena.
- 44. Nault A., Gagnon D. 1988 – Seasonal biomass and nutrient allocation patterns in wild leek (Allium tricoccum Ait.), a spring geophyte – Bull. Torrey Bot. Club, 115: 45–54.
- 45. Nault A., Gagnon D. 1993 – Ramet demography of Allium tricoccum, a spring ephemeral, perennial forest herb – J. Ecol. 81: 101–119.
- 46. Nimis P.L., Bolognini G. 1993 – Quantitative phytogeography of the Italian beech forests – Vegetatio, 109: 125–143.
- 47. Oberdorfer E. 1994 – Pflanzensoziologische Exkursionsflora – Eugen Ulmer, Stuttgart.
- 48. Olesen J.M. 1994 – A fatal growth pattern and ways of postponing death: corm dynamics in the perennial herb Corydalis cava – Bot. J. Linn. Soc., 115: 95–113.
- 49. Øien D.I., Pedersen B. 2005 – Seasonal pattern of dry matter allocation in Dactylorhiza lapponica (Orchideaceae) and the relation between tuber size and flowering – Nord. J. Bot. 23: 441–451.
- 50. Pantis J.D. 1993 – Biomass and nutrient allocation patterns in the Mediterranean geophyte Asphodelus aestivus Brot. (Thessaly, Greece) – Acta Oecol. 14: 489–500.
- 51. Pantis J.D., Sgardelis S.P., Stamou G.P. 1994 – Asphodelus aestivus, an example of synchronization with the climate periodicity – Int. J. Biometeorol. 38: 28–32.
- 52. Pastor J., Valdés B. 1985 – Bulb structure in some species of Allium (Liliaceae) of the Iberian Peninsula – Ann. Musei Goulandris, 7: 249–261.
- 53. Pate J.S., Dixon K. W. 1982 – Tuberous, cormous and bulbous plants. Biology of an adaptive strategy in western Australia – University of Western Australia Press, Nedlands, 268 pp.
- 54. Pistrick K. 1992 – Phenological variability in the genus Allium L. (In: The genus Allium – taxonomic problems and genetic resources, Eds. P. Hanelt, K. Hammer, H. Knüpffer) – IGCPR, Gatersleben, pp. 243–249.
- 55. Poorter H., Lewis C. 1986 – Testing differences in relative growth rate: a method avoiding curve fitting and pairing – Physiol. Plant. 67: 223–226.
- 56. Rees A.R. 1966 – The physiology of ornamental bulbous plants – Bot. Rev. 32: 1–23.
- 57. Rees A.R. 1972 – The growth of bulbs – Academic Press, London.
- 58. Richens R.H. 1947 – Biological flora of the British Isles. Allium vineale L. – J. Ecol. 34: 209–227.
- 59. Ronsheim M.L. 1996 – Evidence against a frequency-dependent advantage for sexual reproduction in Allium vineale – Am. Nat. 147: 718–734.
- 60. Rosen C.J, Tong C.B.S. 2001 – Yield, dry matter partitioning, and storage quality of hardneck garlic as affected by soil amendments and scape removal – HortScience, 36: 1235–1239.
- 61. Routhier M.C., Lapointe L. 2002 – Impact of tree leaf phenology on growth rates and reproduction in the spring flowering species Trillium erectum (Liliaceae) – Am. J. Bot. 89: 500–505.
- 62. Ruiters C., McKenzie B. 1994 – Seasonal allocation and efficiency patterns of biomass and resources in the perennial geophyte Sparaxis grandiflora subsp. fimbricata (Iridaceae) in lowland coastal fynbos, South Africa – Ann. Bot. 74: 633–646.
- 63. Rychnovská M., Úlehlová B. 1975 – Autokölogische studie der tschechoslowakischen Stipa-Arten – Academia, Praha 170 pp.
- 64. Salisbury F.B., Ross C.W. 1978 – Plant physiology, 2nd ed. – Wadsworth Publishing, Belmont.
- 65. Seiwa K. 1998 – Advantages of early germination for growth and survival of seedlings of Acer mono under different overstorey phenologies in deciduous broad-leaved forests – J. Ecol. 86: 219–228.
- 66. Snow A.A., Whigham D.F. 1989 – Costs of flower and fruit production in Tipularia discolor (Orchideaceae) – Ecology, 70: 1286–1293.
- 67. Spano D., Cesaraccio C., Duce P., Snyder R.L. 1999 – Phenological stages of natural species and their use as climate indicators – Int. J. Biomet. 42: 124–133.
- 68. Stearn W.T. 1980 – Allium L. (In: Flora Europaea. Vol. X, Eds. T. G. Tutin, V. H. Heywood, N. A. Rurgess, D. M. Moore, D. H. Valentine, S. M. Walters, D. A. Webb) – Cambridge University Press, Cambridge, pp. 49–69.
- 69. Tissue D.T., Skillman J.B., McDonald E.P., Strain B.R. 1995 – Photosynthesis and carbon allocation in Tipularia discolor (Orchideaceae), a wintergreen understory herb – Am. J. Bot. 82: 1249–1256.
- 70. van der Valk G.G. M., Timmer M.J.G. 1974 – Plant density in relation to tulip bulb growth – Sci. Hort. 2: 69–81.
- 71. Vaughton G., Ramsey M. 2001 – Variation in summer dormancy in the lilioid geophyte Burchardia umbellata (Colchicaceae) – Am. J. Bot. 88: 1223–1229.
- 72. Zar J.H. 1996 – Biostatistical analysis. Third edition – Prentice Hall, New Jersey, 663 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2379-9055