PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biochemical markers of tropospheric ozone : experimentation with test plants

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigated the potential role of selected antioxidant enzymes: superoxide dismutase (SOD) and peroxidase (POX) as biochemical markers of the impact of tropospheric ozone. Experiments were carried out in ambient air conditions with two tobacco cultivars: Bel W3 and Bel B, which are sensitive and resistant to ozone, respectively. In this study, the degree of leaf injury of the sensitive cultivar was used as an indicator of the ozone level in correlation to the enzyme activity of both tobacco cultivars. In spite of low levels of tropospheric ozone during experimental season, the increase of antioxidant enzyme (SOD and POX) activity concomitant with the increase of ozone concentration was noticed in the sensitive cultivar as well as in the resistant one. This observation is especially important for the resistant tobacco, which does not exhibit any visual effects of ozone influence. Our results could be extrapolated to other plant species (i.e. Poaceae, Fabaceae, Solanaceae, Betulaceae, Salicaceae, Pinaceae), which do not reveal visible lesions in response to ozone stress.
Rocznik
Strony
3--14
Opis fizyczny
Bibliogr. 55 poz.,Rys., tab., wykr.,
Twórcy
autor
autor
autor
autor
  • Department of Ecology and Environmental Protection, Poznań University of Life Sciences, Piątkowska 94C, 60-649 Poznań, Poland, klaudine@up.poznan.pl
Bibliografia
  • 1. Ambasht N.K., Agrawal M. 2003 – Effects of enhanced UV-B radiation and tropospheric ozone on physiological biochemical characteristic of field grown wheat – Biol. Plat. 47: 625–628.
  • 2. Alonso R., Elvira S., Castillo F.J., Gimeno B.S. 2001 – Interactive effects of ozone and drought stress on pigments and activities of antioxidant enzymes in Pinus halepensis – Plant Cell Environ. 24: 905–916.
  • 3. Asada K., Yoshikawa K., Takahashi M., Maeda Y., Enmanji K. 1975 – Superoxide dismutases from a blue-green alga, Plectonema boryanum – J. Biol. Chem. 50: 2801–2807.
  • 4. Bahl A., Loitsch S., Kahl G. 1993 – Air pollution and plant gene expression (In: Current Topics in Plant Molecular Biology: Plant responses to the Environment, Ed. P. Gresshoff ) – CRC press, Boca Raton, USA, pp. 71–96.
  • 5. Barret L.A., Bunce N.J., Gillespie T.J. 1998 – Estimation of tropospheric ozone production using concentrations of hydrocarbons and NOx, and a comprehensive hydrocarbons reactivity parameter – J. Photochem. Photobiol. A: Chemistry. 113: 1–8.
  • 6. Beauchamp Ch., Fridovich I. 1971 – Superoxide dismutase: improved assays and an assay applicable acrylamide gels – Anal. Biochem. 44: 276–287.
  • 7. Bernardi R., Nali C., Ginestri P., Pugliesi C., Lorenzini G., Durante M. 2004 – Antioxidant enzyme isoforms on gels in two poplar clones differing in sensitivity after exposure to ozone – Biol. Plantarum, 48: 41–48.
  • 8. Blokhina O., Virolainen E., Fagerstedt K.V. 2003 – Antioxidants, oxidative damage and oxygen deprivation stress: A review – Ann. Bot. 91: 179–194.
  • 9. Borowiak K. 2005 – Stopień uszkodzenia blaszki liściowej tytoniu szlachetnego pod wpływem ozonu troposferycznego na terenie miasta Poznania i okolic w latach 2002–2004 [The evaluation of visible leaf injury of tobacco plants caused by tropospheric ozone in the Poznań city and surrounding areas in 2002–2004] – Prace Kom. Nauk Roln. i Kom. Nauk Leśn. PTPN – Polish Association of Science Friends, 98/99: 57–66. (in Polish).
  • 10. Bradford M. 1976 – A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding – Anal. Biochem. 72: 248–254.
  • 11. Calatayud A., Iglesias D.J., Talón M., Berreno E. 2003 – Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant system and lipid peroxidation – Plant Physiol Bioch. 41: 839–845.
  • 12. Calatayud A., Iglesias D.J., Talón M., Berreno E. 2004 – Response of spinach leaves (Spinacia oleracea) to ozone by gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation – Photosythetica, 42: 23–29.
  • 13. Chameides W.L., Lodge L.P. 1992 – Tropospheric ozone: formation and fate (In: Surface ozone exposures and their effects on vegetation, Ed. A.S. Lefohn) – Lewis Publisher, Chelsea, USA, pp. 5–30.
  • 14. Chernikova T., Robinson J.M., Lee E.H., Mulchi C.L. 2000 – Ozone tolerance and antioxidant enzyme activity in soybean cultivars – Photosynt. Res. 64: 15–26.
  • 15. Cuny D., Davranche L., Van Haluwyn C., Plaisance H., Caron B., Malrieu V. 2004 – Monitoring ozone by using tobacco, automated network and passive sampler in an industrial area in France (In: Urban air pollution, bioindication and environmental awareness, Eds. A. Klumpp A.W. Ansel, G. Klumpp) – Cuvillier Verlag, Göttingen, pp. 89–96
  • 16. Davis B.J. 1964 – Disc electrophoresis-II: method and application to human serum proteins – Ann. New York Acad. Sci. 121: 404–427.
  • 17. Faoro F., Iriti M.2005 – Cell death behind invisible symptoms: early diagnosis of ozone injury – Biol. Plant. 49: 585–592.
  • 18. Godzik B. 1997 – Surface ozone concentrations in southern Poland: tobacco cultivar exposure study – Frag. Flor. Geobot. 42: 161–172.
  • 19. Godzik B. 2000 – The measurements of tropospheric ozone concentration in Southern Poland using the passive samplers and plant bioindicators – Arch. Environ. Prot. 26: 7–19.
  • 20. Guidi L., Di Cagno R., Soldatini G.F. 2000 – Screening of bean cultivars for their response to ozone as evaluated by visible symptoms and leaf chlorofil fluorescence – Environ. Pollut. 107: 349–355.
  • 21. Halliwell B. 2006 – Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life – Plant Physiol. 141: 312–322.
  • 22. Heggestad H.E. 1991 – Origin of Bel W3, Bel C and Bel B in tobacco varietes and their use as indicators of ozone – Environ. Poll. 74: 264–291.
  • 23. Hurst A.C., Grams T.E.E., Ratajczak R. 2004 – Effects of salinity, high irradiance, ozone and ethylene on mode of photosynthesis, oxidative stress and oxidative damage in the C3/CAM intermediate plant Mesembryanthemum crystalinum L. – Plant Cell Environm. 27: 187–197.
  • 24. IPCC, 2007– Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – (Core Writing Team, Eds. R.K. Pachauri, A. Reisinger) – IPCC, Geneva, Switzerland, 104 pp.
  • 25. Iriti M., Faoro F. 2008 – Oxidative stress, the paradigm of ozone toxicity in plants and animals – Water Air Soil Pollut. 187: 285–301.
  • 26. Juda-Rezler K. 2000 – Oddziaływanie zanieczyszczeń powietrza na środowisko [Influence of air pollutants to environment] – Oficyna Wydawnicza Politechniki Warszawskiej [Printing House of Warsaw University of Technology] Warszawa, 243 pp.
  • 27. Klumpp A., Ansel W., Klumpp G., Pickl C. 1999 – European Network for the Assessment of Air Quality by the use of Bio-indicator Plants. Criteria for the selection of the bioindicator stations. Instructions for cultivation, exposure, injury assessment and sampling of the bio-indicator species – Universität Hohenheim, Stuttgart, Germany.
  • 28. Klumpp A., Klumpp G., Ansel W. 2004 – Urban air quality in Europe – results of three years standardized biomonitoring studies (In: Urban air pollution, bioindication and environmental awareness, Eds. A. Klumpp et al.) – Cuvillier Verlag, Göttingen, pp. 25–58.
  • 29. Klumpp A., Ansel W., K lumpp G., Vergne P., Sifakis N., Sanz M.J., Rasmussen S., Ro-Poulsen H., Ribas A., Penuelas J., Kambezidis H., Heg S., Garrec J.P., Calatayu V. 2006 – Ozone pollution and ozone biomonitoring in European cities. Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution – Atmos. Environ. 40: 7437–7448.
  • 30. Manning W.J., Feder W.A. 1980 – Biomonitoring air pollutants with plants – London. Applied Science Pub. Ltd, 142 pp.
  • 31. Manning W.J., Godzik B. 2004 – Bioindicator plants for ambient ozone in Central and Eastern Europe – Env. Pollut. 130: 33–39.
  • 32. Mittler R. 2002 – Oxidative stress, antioxidants and stress tolerance – Trends Plant Sci. 7: 405–410.
  • 33. Moldau H. 1998 – Hierarchy of ozone scavenging reactions in the plant cell wall – Physiol. Plant. 104: 617–622.
  • 34. Nali C., Ferretti M., Pellegrini M., Lorenzini G. 2001 – Monitoring and biomonitoring of surface ozone in Florence, Italy – Enviro. Mon. Assess. 69: 159–174.
  • 35. Nali C., Paoletti E., Marabottini R., Della Rocca G., Lorenzini G., Paolacci A.R., Ciaffi M., Badiani M. 2004 – Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species – Atmos. Environ. 38: 2247–2257.
  • 36. Nali C., Paoletti E., Pucciariello C., Lorenzini G. 2005 – On the different sensitivity of white clover clones to ozone: physiological and biochemical parameters in a multivariate approach – Water Air Soil Poll. 164: 137–153.
  • 37. Pasqualini S., Batini P., Ederli L., Porceddu A., Piccione C., De Marchis F., Antonielli M. 2001– Effects of shortterm ozone fumigation on tobacco plants: response of the scavenging system and expression of the glutathion reductase – Atmos. Environ. 24: 245–252.
  • 38. Pellinen R., Palva T., Kangasjärvi J. 1999 – Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells – Plant J. 20: 349–356.
  • 39. Pitcher L.H., Zilinskas B.A. 1996 – Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis – Plant Physiol. 110: 583–588.
  • 40. Ranieri A., D’Urso G., Nali C., Lorenzini G., Soldatini G.F. 1996 – Ozone stimulates apoplastic system in pumpkin leaves – Physiol. Plant. 97: 381–387.
  • 41. Rao M.V., Davis K.R. 1999 – Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: The role of salicylic acid – Plant J. 17: 603–614.
  • 42. Ros Barceló A. 1987 – Quantification of lupin peroxidase isoenzymes by densitometry – An. Biol. (Seccion Biologia General), 14: 33–38.
  • 43. Runeckles V.C., Vaartnou M. 1997 – EPR evidence for superoxide anion formation in leaves during exposure to low levels of ozone – Plant Cell Environ. 20: 306–314.
  • 44. Sabarinath S., Bharti S., Khanna-Chopra R. 2005 – Superoxide dismutase and abiotic stress tolerance – Physiol. Mol. Biol. Plants. 11: 187–198.
  • 45. Saitanis C.J., Karandinos M.G. 2001 – Instrumental recoding and biomonitoring of ambient ozone in the Greek countryside – Chemosphere, 44: 813–821.
  • 46. Scandalios J.G. 2001 – Molecular responses to oxidative stress (In: Molecular Analysis of Plant Adaptations to the Environment, Ed. M. J. Hawkesford) – Kluwer Academic Publishers, Dordrecht, pp. 181–208.
  • 47. Scebba F., Pucciareli I., Soldatini G.F., Ranieri A. 2003 – O3-induced changes in the antioxidant systems and their relationship to different degrees of susceptibility of two clover species – Plant Sci. 165: 583–593.
  • 48. Schraudner M., Moeder W., Wiese C., Van Camp W., Inze D., Langebartels C., Sandermann H.Jr. 1998 – Ozoneinduced oxidative burst in the ozone biomonitor plant, tobacco Bel W3 – Plant J. 16: 235–245.
  • 49. Tanaka K., Suda Y., Kondo N., Sugahara K. 1985 – O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts – Plant Cell Physiol. 26: 1425–1431.
  • 50. Tingey D.T., Fites R.C., Wickliff C. 1976 – Differential foliar sensitivity of soybean cultivars to ozone associated with differential enzyme activities – Physiol. Plant. 37: 69–72.
  • 51. Tuomainen J., Pellinen R., Roy S., Kiiskinen M., Eloranta T., Karjalainena R., Kangasjärvi J. 1996 – Ozone affects birch (Betula pendula Roth) phenylpropanoid, polyamine and active oxygen detoxifying pathways at biochemical and gene expression level – J. Plant Physiol. 148: 179–188.
  • 52. Van Camp W., Willekens H., Bowler C., Van Montagu M., Inzé D., Reupold-Popp R., Sandermann H.Jr., Langebartels C. 1994 – Elevated levels of superoxide dismutase protect transgenic plants against ozone damage – Biotechniques, 12: 165–168.
  • 53. VDI 2000 – Verein Deutscher Ingenieure Biologische Messverfahren zur Ermittlung und Beurteilung der Wirkung von Luftverunreinigungen auf Pflanzen (Bioindikation). Ermittlung und Beurteilung der phytotoxischen Wirkung von Ozon und andren Photooxidantien. Verfahren der standardisierten Tabak-Exposition – VDI-Guideline 3957 Part 6 (Draft).
  • 54. Vockenhuber H. 1995 – Bomba zegarowa: ozon [Time bomb: ozone] – Oficyna Wydawnicza SPAR – Printing House SPAR, Warszawa, 137 pp.
  • 55. Wu Y., von Tiedemann A. 2002 – Evidence for oxidative stress involved in physiological leaf spot formation in winter and spring barley – Biochem. Cell. Biol. 92: 145–155.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2379-9023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.