PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of heat transfer through a circular pipe with porous-ring turbulators

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza numeryczna przenoszenia ciepła przez rurę zaopatrzoną w pierścieniowe porowate turbulatory
Języki publikacji
EN
Abstrakty
EN
A numerical study has been carried out of heat transfer enhancement and flow characteristics through artificial porous materials in the form of ring turbulators on heated wall of a circular pipe for turbulent flow (Reynolds number range 16 000.64 000). In the study, uniform heat flux of 2500 W/m2 from a circular pipe wall surface has been assumed. A significant enhancement of heat transfer in the porous-ring turbulators is observed compared with that in a smooth surface. Four various shapes of porous- ring turbulators (0 (solid), 0.2, 0.4 and 1 (smooth circular pipe) porosity) have been examined using the RNG k.. turbulence model, and compared based on heat transfer enhancement and friction characteristics. Heat transfer decreases with increasing porosity. Using porous-ring turbulators in the pipe gives an increase in the Nusselt number and heat transfer enhancement. Therefore, such turbulators may be used in heat exchangers to increase heat transfer and energy saving.
Słowa kluczowe
Rocznik
Strony
1053--1070
Opis fizyczny
Bibliogr. 19 poz.,Rys., wykr.,
Twórcy
autor
autor
autor
  • Erciyes University, Engineering Faculty, Department of Mechanical Engineering, 38039 Kayseri, Turkiye
Bibliografia
  • [1] SUBBOJIN V.I., HARITONOV V.V., Teplofizika Vys. Temp., 1991, 29, 365 (in Russian).
  • [2] LAGE J.L., WEINERT A.K., PRICE D.C., WEBER R.M., Int. J. Heat Mass Transfer, 1996, 39, 3633.
  • [3] CHRYSLER G.M., SIMONS R.E., AIAA/ASME Thermophysics and Heat Transfer Conference, Cryogenic and Immersion Cooling of Optics and Electronic Equipment, ASME HTD-131, 1990, 21.
  • [4] YANG Y-T., HWANG C-Z., Int. J. Heat Mass Transfer, 2003, 46, 771.
  • [5] INADA S., TAGUCHI T., YANG W-J., Int. J.Heat Mass Transfer, 1999, 42, 2897.
  • [6] YIH K.A., Int. Comm. Heat Mass Transfer, 1998, 25, 427.
  • [7] SUNDARAVADIVELU K., TSO C.P., Int. J. Heat Mass Transfer, 2003, 46, 2329.
  • [8] TAN K-K., SAM T., JAMALUDIN H., Int. J. Heat Mass Transfer, 2003, 46, 2857.
  • [9] SILVA R. A., LEMOS M. J.S.D., Int. J. Heat Mass Transfer, 2003, 46, 5113.
  • [10] LEE C.K, ABDEL-MONEIM S.A., Int. J. Heat Mass Transfer, 2001, 28, 161.
  • [11] YAPICI H., ALBAYRAK B., Energ. Conv. Manage., 2004, 45, 927.
  • [12] KO K.H., ANAND H.K., Int. J. Heat Mass Transfer, 2003, 46, 4191.
  • [13] AKANSU S.O., Appl. Energy, 2006, 3, 280.
  • [14] UNALAN S, AKANSU S.O, KONCA A., Int. J. Num. Meth. Heat Fluid Flow, 2007, 17, 494.
  • [15] KAHRAMAN N., AKANSU S.O., SEKMEN U., J. Enh. Heat Transfer, 2007, 14, 135.
  • [16] Fluent Incorporated. FLUENT User's guide version 6.1, 2003.
  • [17] CENGEL Y.A., Heat Transfer: A Practical Approach, McGraw-Hill Inc., 1998.
  • [18] KAKAÇ S., Örneklerle Isı Transferi, Tip&Teknik Yayıncılık, 1998, Ankara, Türkiye.
  • [19] LIENHARD IV J.H., Heat Transfer Text Book 3rd Ed., Phlogiston Pres, Cambridge, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2216-8666
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.