PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Metal resistance of soil algae (Chlorophyta) occurring in post-flotation Zn/Pb and Cu-tailing ponds

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Algae as pioneer organisms are important in extreme environments. We isolated several green algae (Chlorophyta) from Zn/Pb- and Cu-enriched ground samples of post-flotation tailing ponds, containing 17200-18400 mg Zn kg[^-1], 3017-6566 mg Pb kg[^-1] or 1420 mg Cu kg[^-1]. The algae with different morphologies belonged to following classes: Chlorophyceae and Trebouxiophyceae. Their Zn-, Pb- and Cu- resistance in comparison with soil green algae (Chlorophyceae) isolated from the unpolluted control soil was evaluated under laboratory conditions on the basis of 96h-EC[50] (effective metal concentration which causes 50% inhibition of algal growth after 96 h exposure). Among isolated algae Dictyococcus cf. varians Gerneck em. Starr from the Zn/Pb-tailing pond was highly resistant both to lead (EC[50] 48 [my]M) and zinc (EC[50] 126 [my]M), but sensitive to copper (EC[50] 2 [my]M). Stichococcus minor Nageli and Chlamydomonas boldii Ettl from the Cu-tailing pond were resistant to copper (EC[50] 17.8 [my]M and 10 [my]M, respectively). Simultaneously, S. minor revealed co-resistance to Zn (EC[50] 251 [my]M), while C. boldii to Pb (EC[50] 38.9 [my]M). Geminella terricola J.B. Petersen (Chlorophyceae), isolated from the unpolluted control soil, revealed high sensitivity to the three metals (Zn-EC[50] 44.6 [my]M; Pb-EC[50] 10.2 [my]M and Cu-EC[50] 6.4 [my]M). Simultaneously, G. terricola accumulated intracellularly higher amounts of Zn (7.1 amol [my]m[^-3]) and Cu (5.5 amol [my]m[^-3]) than all the algae from the polluted ground samples (Zn: 1.2-6.4 amol [my]m[^-3] and Cu: 0.4-2.7 amol [my]m[^-3]). It also accumulated high amounts of Pb (6.0 amol [my]m[^-3]), but two-fold lower than D. cf. varians. Using cytochemical staining of metals dark pink Pb-rhodizonate complexes were detected in thick cell walls of the Pb/Zn-resistant D. cf. varians and in thick mucilage layers of the Cu/Pb-resistant C. boldii. However, in the Pb-sensitive S. minor Pb-complexes were detected inside deformed cells. Pink-orange Zn-dithizone complexes were mainly distributed inside the cells of the Zn-resistant D. cf. varians. The results obtained suggest that thick cell walls or envelopes may be partly responsible for the higher Pb-resistance of some studied algae. However, in the case of micro-nutrients like Zn or Cu other resistance mechanisms (biochemical / physiological) may be involved. It seems that algal species or ecotypes living in the grounds of metal post-flotation tailing ponds have been adapted to heavy metals present in their habitats and may be useful for remediation of such degraded environments.
Rocznik
Strony
415--430
Opis fizyczny
Bibliogr. 67 poz.,fot., rys., tab., wy
Twórcy
  • Centre for Ecological Research, Polish Academy of Sciences, Experimental Station Niecala 18/3, 20-080 Lublin, Poland, pawlik@golem.umsc.lublin.pl
Bibliografia
  • Aruoja V., Kurvet I., Dubourguier H.C., Kahru A. 2004 – Toxicity testing of heavy metal-polluted soils with algae Selenastrum capricornutum: a soil suspension assay – Environ. Toxicol. 19 (4): 396–402.
  • Blaise C., Ferard J.F., Vasseur P. 1998 - Microplate toxicity tests with microalgae: a review (In: Microscale testing in aquatic toxicology, Eds. P. Wells, K. Lee, C. Blaise) – Advances, Techniques and Practice CRC Press, Boca Raton, USA, pp. 269–288.
  • Bossuyt B.T.A., Janssen C.R. 2004 – Longterm acclimation of Pseudokirchneriella subcapitata (Korshikov) Hindak to different copper concentrations: changes in tolerance and physiology – Aquat. Toxicol. 68: 61–74.
  • Correa J.A., Gonzales P., Sanchez P., Munoz J., Orellana M.C. 1996 – Copper-algae interactions: inheritance or adaptation? – Env. Mon. Assess. 40: 41–54.
  • Dobrzański B., Uziak S., Klimowicz Z., Melke J. 1992 – Badanie gleb w laboratorium i w polu. [A study of soil in a laboratory and in a field] – UMCS – University of Maria Curie-Skłodowska, Lublin, 331 pp. (In Polish)
  • Ernst W.H.O., Knolle F., Kratz S., Schung E. 2004 – Aspects of ecotoxicology of heavy metals in the Harz region – a guided excursion – Landbauforschung Völkenrode, 2 (54): 53–71.
  • Ettl H., Gärtner G. 1995 – Syllabus der Boden-, Luft- und Flechtenalgen - Gustav Fisher Verlag, Stuttgart, Jena, New York, pp. 721.
  • Evans R.D., Johansen J.R. 1999 – Microbiotic crusts and ecosystem processes – Crit. Rev. Plant Sci. 18: 183–225.
  • Evdokimova G.A., Mozgova N.P., Shtina E.A. 1997 – Soil pollution by fluorine and evaluation of the soil microflora status in the area of influence of an aluminium plant – Euroasian Soil Sci. 30 (7): 796–803.
  • Fathy A.A., Falkner G. 1997 – Adaptation to elevation of the concentration of the trace element copper during growth of Scenedesmus bijuga is reflected in the properties of the copper uptake system – J. Trace and Microprobe Techniq. 15 (3): 321–333.
  • Filipek T. 1999 – Podstawy i skutki chemizacji agroekosystemów [The bases and results of chemical activity of agricultural ecosystems] - Academy of Agriculture, Lublin. (In Polish)
  • Foster P.L. 1982 – Metal resistances of Chlorophyta from polluted by heavy metals – Freshwater Biol. 12: 41–61.
  • Garcia-Meza J.V., Barrangue C., Admiraal W. 2005 – Biofilm formation by algae as a mechanism for surviving on mine tailings - Environ. Toxicol. Chem. 24 (3): 573–581.
  • Graham L.E., Wilcox L.W. 2000 – Algae – Prentice Hall, Upper Saddle River, New Jersey.
  • Grodzińska K., Szarek-Łukaszewska G. 2002 – Hałdy cynkowo-ołowiowe w okolicach Olkusza – przeszłość, teraźniejszość i przyszłość [Zinc-lead mine spoils near Olkusz past, present and future] – Kosmos, 51(2): 127–138. (In Polish)
  • Gumiński S. 1990 – Fizjologia glonów i sinic [Algal and cyanobacterial physiology] - Wrocław University Press, Wrocław, 207 pp. (In Polish)
  • Gustavson K., Wängberg S.-A. 1995 – Tolerance induction and succession in microalgae communities exposed to copper and atrazine - Aquat. Toxicol. 32: 283–302.
  • Hammel W., Steubing L., Debus R. 1998 - Assessment of the ecotoxic potential of soil contaminants by using a soil-algae test – Ecotoxicol. Environ. Safety, Environmental Research, Section B. 40: 173–176.
  • Heijerick D.G., Bossuyt B.T.A., De Schamphelaere K.A.C., Indeherberg M., Mingazzini M., Janssen C.R. 2005 – Effect of varying physiochemistry of European surface waters on the copper toxicity to the green alga Pseudokirchneriella subcapitata - Ecotoxicology, 14 (6): 661–670.
  • Hoffmann L. 1989 – Algae of terrestrial habitats - Bot. Rev. 55: 77–105.
  • Houba V.J.G., Lexmond Th.M., Novozamsky I., Van Der Lee J.J. 1996 – State of the art and future developments in soil analysis for bioavailability assessment – Sci. Total Environ. 178: 21–28.
  • Hu C.X., Zhang D.L., Liu Y.D. 2004 – Research progress on algae of the microbial crusts in arid and semiarid regions – Prog. Nat. Sci. 14 (4): 289–295.
  • Kabata-Pendias A., Pendias H. 1999 – Biogeochemia pierwiastków śladowych [Biogeochemistry of trace elements] – PWN – Polish Scientific Publishers, Warszawa, pp. 398. (In Polish)
  • Knauer K., Behra R., Sigg L. 1997 – Effects of free Cu+2 and Zn+2 ions on growth and metal accumulation in freshwater algae – Environ. Toxicol. Chem. 16: 220–229.
  • Ledin M. 2000 – Accumulation of metals by microorganisms - processes and importance for soil systems – Earth-Sciences Rev. 51: 1–31.
  • Lewis M.A. 1995 – Algae and vascular plant tests. Part I. Chapter 4 (In: Fundamentals of aquatic ecotoxicology, Ed. Rand G. M., 2nd edition) – Taylor and Francis, pp. 135–169.
  • Li M., Hu C., Zhu Q., Chen L., Kong Z., Liu Z. 2006 – Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in microalga Pavlova viridis (Prymnesiophyceae) – Chemosphere, 62: 565–572.
  • Lombardi A.T., Vieira A.A.H. 1999 - Lead- and copper-complexing extracellular ligands released by Kirchneriella aperta (Chlorococcales, Chlorophyta) – Phycologia, 38 (4): 283–288.
  • Lukešová A. 1993 – Soil algae in four secondary successional stages on abandoned fields - Algol. Studies, 71: 81–102.
  • Lukešová A. 2001 – Soil algae in brown coal and lignite post-mining areas in Central Europe (Czech Republic and Germany) – Restoration Ecol. 9 (4): 341–350.
  • Lukešová A., Tajovsky K. 1999 – Interactions between soil algae and saprophagous invertebrates (Diplopoda and Oniscidea) – 5th Central European Workshop on Soil Zoology, České Budĕjovice, April 27–30, 187–195.
  • Macfie S.M., Tarmohamed Y., Welbourn P.M. 1994 – Effects of cadmium, cobalt, copper and nickel on growth of the green alga Chlamydomonas reinhardtii: the influences of the cell wall and pH – Arch. Environ. Contam. Toxicol. 27: 454–458.
  • Macfie S.M., Welbourn P.M. 2000 – The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch. Environ. Contam. Toxicol. 39: 413–419.
  • Mackinney G. 1941 – Absorption of light by chlorophyll solutions – J. Biol. Chem. 140: 315–322.
  • Mador J.P., Sibley T.H., Swartzman G.L., Taub F.B. 1998 – Copper tolerance by the freshwater algal species Oocystis pusila and its ability to alter free-ions copper – Aquat. Toxicol. 44: 69–82.
  • Mallick N. 2004 – Copper-induced oxidative stress in the chlorophyceaen microalga Chlorella vulgaris: response of the antioxidant system - J. Plant Physiol. 161 (5): 591–597.
  • Maxwell C.D. 1991 – Floristic changes in soil algae and cyanobacteria in reclaimed metalcontaminated land at Sudbury, Canada – Wat. Air Soil Pollut. 60: 381–393.
  • Metting B. 1981 – The systematics and ecology of soil algae – Bot. Review 47: 195–312.
  • Morsi Abd-El-Monem H., Corradi M.G., Gorbi G. 1998 – Toxicity of copper and zinc to two strains of Scenedesmus acutus having different sensitivity to chromium – Env. Exp. Bot. 40: 59–66.
  • Neustupa J., Škaloud P. 2004 – Contribution to the knowledge of soil algae of two abandoned industrial sedimentation basins in eastern bohemia (In: Natural recovery of man–made deposits in landscape (Biotic interactions and ore/ash-slag artificial ecosystems, Ed. P. Kovář) – Academia, Praha, pp. 188–192.
  • Olaveson M.M., Nalewajko C. 2000 – Effects of acidity on the growth of two Euglena species – Hydrobiol. 433: 39–56.
  • Pawlik-Skowrońska B. 2000 – Relationships between acid-soluble thiol peptides and accumulated Pb in the green alga Stigeoclonium tenue – Aquat. Toxicol. 50: 221–230.
  • Pawlik-Skowrońska B. 2001 – Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water: effects of some environmental factors - Aquat. Toxicol. 52: 241–249.
  • Pawlik-Skowrońska B. 2002 – Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris – Environ. Pollut. 119: 119–127.
  • Pawlik-Skowrońska B. 2003a – Resistance, accumulation and allocation of zinc in two ecotypes of the green alga Stigeoclonium tenue Kütz. coming from habitats of different heavy metal concentrations – Aquat. Toxicol. 75: 189–198.
  • Pawlik-Skowrońska B. 2003b – When adapted to high zinc concentrations the periphytic green alga Stigeoclonium tenue produces high amounts of novel phytochelatin-related peptides - Aquat. Toxicol. 62: 155–165.
  • Pawlik-Skowrońska B., Skowroński T. 2001 – Freshwater algae (In: Metals in the environment analysis by biodiversity, Ed. M.N.V. Prasad) – Marcel Dekker, New York, pp. 59–94.
  • Rijstenbil J.W., Sinke J.J. 1989 – The influence of salinity fluctuation on the ammonium metabolism of the marine diatom Skeletonema costatum grown in continuous culture – J. Plankton Res. 11: 297–315.
  • Rojičková-Padrtová R., Maršalek B. 1999 - Selection and sensitivity comparisons of algal species for toxicity testing – Chemosphere, 38 (14): 3329–3338.
  • Sanchez-Camazano M., Sanchez-Martin M.J. 1993 – Mobility of cadmium as influenced by soil properties, studied by soil thinlayer chromatography – J. Chromatogr. 643: 357–362.
  • Schat H., Ten Bookum W.M. 1991 – Metal-specificity of metal tolerance syndromes in higher plants (In: The vegetation of ultramafic (serpentine) soils: Proceedings of the First International Conference on Serpentine Ecology, Eds. A.J.M. Baker, J. Proctor, R.D. Reeves), pp. 337–351.
  • Shields L.M., Durrell L.W. 1964 – Algae in relation to soil fertility – Bot. Rev. 30: 92–128.
  • Shubert L.E., Starks T.L. 1979 – Algal succession on orphaned coal mine spoils (In: Ecology and coal resource development, Ed. M.K. Wali) – Pergamon Press, New York, pp. 661–669.
  • Shubert L.E., Rusu A-M., Bartok K., Moncrief f C.B. 2001 – Distribution and algal abundance of edaphic algae adapted to highly acidic, metal rich soil (In: Algae and extreme environments, Eds. J. Elater, O. Lhotsky) – Nova Hedwigia, Beiheft, 123: 411–425.
  • Silverberg B.A. 1975 – Ultrastructural localization of lead in Stigeoclonium tenue (Chlorophyceae, Ulotrichales) as demonstrated by cytochemical and X-ray microanalysis – Phycologia, 14: 265–274.
  • Simons J., Van Beem A.P., De Vries P.J.R. 1986 – Morphology of the prostrate thallus of Stigeoclonium (Chlorophyceae, Chaetophorales) and its taxonomic implications – Phycologia, 25: 210–220.
  • Skowroński T. 1984 – Uptake of cadmium by Stichococcus bacillaris – Chemosphere, 13: 1385–1389.
  • Soldo D., Behra R. 2000 – Long-term of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver – Aquat. Toxicol. 47 (3–4): 181–189.
  • Takamura N., Kasai F., Watanabe M.M. 1989 – Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae – J. Appl. Phycol. 1: 39–52.
  • Takamura N., Hatakeyama S., Sugaya Y. 1990 – Seasonal changes in species composition and production of periphyton in an urban river running through an abandoned copper mining region – Jpn. J. Limnol. 4: 225–235.
  • Thomas G.W. 1982 – Exchangeable cations (In: Methods of soil analysis. Part II, Eds. A.L. Page, R.H. Miller, D.R. Keeney, 2nd edition) - ASA and SSSA Madison, Wisconsin, USA, pp. 159–165.
  • Trzcińska M., Pawlik-Skowrońska B. 2008 – Soil algal communities inhabiting zinc and lead mine spoils – J. Appl. Phycol. 20 (4): 341–348.
  • Turnau K. 1998 – Heavy metal content and localization in mycorrhizal Euphorbia cyparissias from zinc wastes in southern Poland – Acta Soc. Bot. Pol. 67 (1): 105–113.
  • USEPA 2001 – ECOTOX. User Guide. ECOTOXicology Database System. Version 2.0. Available from http://www.epa.gov/ecotox.
  • Vymazal J. 1990 – Toxicity and accumulation of lead with respect to algae and cyanobacteria: a review – Acta Hydrochim. Hydrobiol. 18: 513–535.
  • Zimmerman W.J. 1993 – Microalgal biotechnology and applications in agriculture (In: Soil microbial ecology. Applications in agricultural and environmental management, Ed. F.B. Jr Metting) – Dekker – New York, pp. 457–479.
  • Yan H., Pan G. 2002 – Toxicity and bioaccumulation of copper in three green microalgal species – Chemosphere, 49: 471–476.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2161-8356
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.