PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-equilibrium statistical mechanics formulation of thermal transport properties for binary and ternary gas mixtures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper develops a new statistical formulation to calculate the thermal diffusivity, binary diffusion coefficient, thermal diffusion factor, viscosity and thermal conductivity of gas mixtures with non-equilibrium statistical mechanics. For the analytical calculation of transport properties, the models of Kihara and Chapman-Cowling (up to the third order) have been used. Thermal transport properties for mixtures involving carbon monoxide, helium, argon, xenon and krypton have been computed with the new formulation in this paper. New mixing rules for the calculation of transport properties for mixtures are developed. Close agreement is obtained between the analytical results (based on statistical mechanics) and experimental data. The results exhibit comparable or better accuracy than previous methods, while providing new insight regarding the detailed statistical mechanisms of intermolecular interactions, as they contribute to the transport property variations with temperature.
Rocznik
Strony
21--46
Opis fizyczny
Bibliogr. 35 poz.,tabl., wykr., wz.,
Twórcy
autor
autor
autor
  • University of Maribor, Faculty of Mechanical Engineering, Maribor, Slovenia
Bibliografia
  • [1] MILLAT, J., DYMOND, J.H., NIETO DE CASTRO, C.A.: Transport Properties of Fluids, Cambridge University Press 1996.
  • [2] NEEDHAM, D. P., ZIEBLAND, H.: The thermal conductivity of liquid and gaseous ammonia, and its anomalous behaviour in the vicinity of the critical point, International Journal of Heat and Mass Transfer, Vol. 8, 1965, No. 11, 1387-1402.
  • [3] LAHOUCINE, C. O., SAKASHITA, H., KUMADA, T.: Simultaneous determination of thermophysical properties using a thermistor, Part 2: Experiment, AIAA Journal of Thermophysics and Heat Transfer, Vol. 18, 2004, No. 3, 302-308.
  • [4] KOSKY, P. C, MAYLOTTE, D. H., GALLO, J. P.: Angstrom methods applied to simultaneous measurements of thermal diffusivity and heat transfer coefficients: Part 1, theory, Inter. Comm. in Heat and Mass Transfer, Vol. 26, 1999, No. 8, 1051-1059.
  • [5] DOWDING, K. J., BECK, J. V., BLACKWELL, B. F.: Estimating temperature-dependent thermal properties, AIAA Journal of Thermophysics and Heat Transfer, Vol. 13, 1999, No. 3, 328-336.
  • [6] KOLYSHKIN, A. A., OKOULICH-KAZARIN, E. G., VAILLANCOURT, R.: A combined unsteady method for the determination of thermal conductivity of gases and fluids, Inter. Comm. in Heat and Mass Transfer, Vol. 17, 1990, No. 4, 521-526.
  • [7] FURUKAWA, M.: Practical expressions for thermodynamic and transport properties of commonly used fluids, AIAA Journal of Thermophysics and Heat Transfer, Vol. 5, 1991, No. 4, 524-531.
  • [8] JONES, I. W.: Calculation of the thermal conductivity of normal hydrogen in the dense gaseous and liquid states, International Journal of Heat and Mass Transfer, Vol. 10, 1967, No. 6, 745-754.
  • [9] BAHADORI, M. N., SOO, S. L.: Non-equilibrium transport phenomena of partially ionized argon, International Journal of Heat and Mass Transfer, Vol. 9, 1966, No. 1, 17-34.
  • [10] MEHDIPOUR, N., ESLAMI, H.: Calculation of transport properties of simple dense fluids, International Journal of Thermal Sciences, Vol. 41, 2002, No. 10, 949-954.
  • [11] ZOBY, E. V., GRAVES, R. A., MOSS, J. N., KUMAR, T. A., SIMMONDS, A.: Transport property correlations for He gas mixtures at temperatures of 1000-25.000 K, AIAA Journal, Vol. 18, 1980, No. 4, 463-470.
  • [12] FERZIGER, J.H., KAPER, H.G.: Mathematical Theory of Transport Processes in Gasses, North-Holland Publishing Company, London 1972.
  • [13] MCCOURT, F. R.W., BEENAKKER, J.J., KÖHLER, W.E., KUSCER, I.: Nonequilibrium Phenomena in Polyatomic gases, Clarendon Press, London 1990.
  • [14] CHAPMAN, S., COWLING, T.G.: The Mathematical Theory of Non-Uniform Gases, Third Edition, Cambridge, University Press 1970.
  • [15] NEUFELD, P.D., JANZEN, A.R., AZIZ, R.A.: Empirical equations to calculate 16 of the transport collision integrals for the Lennard-Jones (12-6) potential, The Journal of Chemical Physics, Vol. 57, No. 2, 1100-1102.
  • [16] KISELEV, S.B., PERKINS, R.A., HUBER, M.L.: Transport properties of refrigerants R32, R125, R134a, and R125+R32 mixtures in and beyond the critical region, International Journal of Refrigeration, Vol 22, 1999, 509-520.
  • [17] KISELEV, S.B., HUBER, M.L.: Transport properties of carbon dioxide+ethane and methane+ethane mixtures in the extended critical region, Fluid Phase Equilibria, Vol. 142, 1998, 253-280.
  • [18] ASSAEL, M.J., DALAOUTI, N.K., GIALOU, K.E.: Viscosity and thermal conductivity of methane, ethane and propane halogenated refrigerants, International Journal of Thermophysics, Vol. 5, 2000, 367-371.
  • [19] ASSAEL, M.J., DALAOUTI, DYMOND, J.H., FELEKI, E.P.: Correlation for viscosity and thermal conductivity of liquid halogenated ethane refrigerants, International Journal of Thermophysics, Vol. 21, 2000, No. 2, 367-376.
  • [20] DYMOND, J.H.: Second virial coefficients and liquid transport properties at saturated vapour pressure of haloalkanes, Fluid Phase Equilibria, Vol. 174, 2000, 13-32.
  • [21] ASSAEL, M.J., DYMOND, J.H., PAPADAKI, M., PATTERSON, P.M.: Correlation and prediction of dense fluid transport coefficients, "II, Simple Molecular Fluids", Fluid Phase equilibria, Vol. 75, 1992, 245-255.
  • [22] KIHARA, T. : Intermolecular Forces, University of Tokyo, John Wiley & Sons, Cichester, New York, Brisbane, Toronto 1976.
  • [23] RIGBY, M., SMITH, E.B., WAKEHAM, W.A., MAITHLAND, G.C.: The Forces between Molecules, Clarendon Press, Oxford 1986.
  • [24] CHUNG, T.-H., LEE, L.L., STARLING, K.E.: Applications of kinetic gas theories and multiparameter correlation for prediction of dillute gas viscosity and thermal conductivity, Ind. Eng. Chem. Res., Vol. 27, 1988, No. 4, 671-659.
  • [25] CHUNG, T.-H., AJLAN, M., LEE, L.L., STARLING, K.E.: Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Ind. Eng. Chem. Fundam., Vol. 23, 1984, No. 1, 8-13.
  • [26] XIANG, W.H.: The new simple extended corresponding-states principle: complex molecular transport properties in dilute gas state, Fluid Phase Equilibria, Vol. 187-188, 221-231.
  • [27] HOLLAND, P.M., HANLEY, H.J.M.: J. Phys. Chem. Ref. Data, 1979, No. 8, 859-873.
  • [28] VESOVIC, V., WAKEHAM, W.: The prediction of viscosity for dense gas mixtures, International Journal of Thermophysics, Vol. 10, 1989, No. 1, 125-131.
  • [29] MASON, E.A, MONCHICK, L.: J. Chem. Phys., Vol. 8, 1962, No. 6, 1622-1639.
  • [30] TILLNER-ROTH, R., YOKEZEKI, A., SATO, H., WATANABE, K.: Thermodynamic Properties of Pure and Blended Hydrofluorocarbon (HFC) Refrigerants, Japan Society of Refrigerating and Air Conditioning Engineers, Tokyo 1997.
  • [31] COPELAND, D.A.: Transport properties for coil, 35th AIAA Plasmadynamics and Laser Conference, AIAA 2004-2261.
  • [32] AVSEC, J.: Calculation of transport coefficients of R-32 and R-125 with the methods of statistical thermodynamics and kinetic theories of gas, Arch. of Thermodynamics, Vol. 24, 2003, No. 3, 69-82.
  • [33] THIJSSE, B.J., HOOFT, F., COOMBE, D.A., KNAAP, H.F.P., BEENAKKER, J.J.M.: Some Simplofied Expressions for the Thermal Conductivity in an External Field, Physica 98A, (1979), North-Holland Publishing Co.
  • [34] HAGHIGHI, B., FATHABADI, M., PAPARI, M.M.: Calculation of the transport properties of CO-noble gases mixtures at low density by the semi-empirical inversion method, Fluid Phase Equilibria, Vol. 203, 2002, 205-225.
  • [35] ZHU, Y., LU X., ZHOU, J., WANG Y., SHI J.: Prediction od diffusion coefficients for gas, liquid and supercritical fluid: application to pure real fluids and infinite dilute binary solutions based on the simulation of Lennard-Jones fluid, Fluid Phase Equilibria, Vol. 194-197, 2002, 1141-1159.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2100-7946
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.